
1 System Foundations

Chapter 2

System Foundations

Before we get to the good stuff, we have some dull but necessary business to take
care of. In this chapter, we’ll take a quick look at some of the basic foundations of
the  Windows  system:  elementary  data  types,  multithreaded  processes,  memory
management, program loading and execution, resources, and the file system. After
we have these preliminaries out of the way, we’ll be ready to talk about the really
interesting stuff: programming the Windows user interface. 

The C/C++ language version of the Win32 Application Program Interface (API) is
defined by a set of header files that you incorporate into your program with a C
#include directive: 

#include <windows.h>
The  master  header  file,  WINDOWS.H,  in  turn  calls  in  other  header  files,  such  as
WINDEF.H (basic type definitions),  WINBASE.H (system kernel),  WINGDI.H (graphics
device  interface—like  QuickDraw  on  the  Macintosh),  WINUSER.H (user  interface
structures and functions), and so on. Taken together, the complete set of header
files defines all of the data structures and functions that constitute the Win32 API. 

Elementary Data Types
The Win32 header files define a set of elementary data types and related constants
to  represent  things  like  integers,  booleans,  characters,  pointers,  floating-point
numbers, and so forth. These are generally derived from the built-in standard types
of the C language, but spelled in full capitals instead of lowercase: INT and CHAR, for
instance, instead of int and char. The Windows versions are carefully defined with
conditional-compilation flags to maintain source-code consistency between different
(16- and 32-bit) versions of the Windows system. For example, type INT represents
a 16-bit integer or a 32-bit integer, depending on which version of the system it’s
compiled for.  As a rule, you should use the Windows-defined data types in your
programs in place of the built-in versions. 
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Table 2–1 shows the most important of the elementary data types. Most of them are
self-explanatory, but the last, HANDLE, needs a bit of further elaboration. Unlike the
Macintosh-style handles that you’re familiar with, a Windows handle is simply an
“opaque reference” to an underlying object.  The handle’s internal  semantics are
meaningful only to the Windows system itself; it has no inherent, straightforward
meaning like a Macintosh “pointer to a pointer.” What’s actually inside the handle is
none of your program’s business: it might be a simple pointer, an indirect pointer,
an index into an internal system table, or who-knows-what else. 

Table 2–1.  Elementary data types
Type name Meaning

VOID Unspecified type
BYTE Unsigned byte (8 bits)
WORD Unsigned word (16 bits)
DWORD Unsigned double word (32 bits)
BOOL Boolean (TRUE or FALSE)
CHAR Character
UCHAR Unsigned character
INT Signed integer
UINT Unsigned integer
SHORT Signed short integer (16 bits)
USHORT Unsigned short integer (16 bits)
LONG Signed long integer (32 bits)
ULONG Unsigned long integer (32 bits)
FLOAT Floating-point number
POINT Point
RECT Rectangle
HANDLE Handle

This means that you can’t “open up” a Windows handle and use it to put your hands
directly on the underlying data structure. The only meaningful thing you can do with
a handle is pass it to a Windows function and let the system manipulate the data
structure  for  you.  For  instance,  suppose  theWindow is  a  handle  to  a  window
structure and you want to get the value of its style field, which contains a set of bit
flags controlling the window’s appearance on the screen. On the Macintosh, you
would write something like this (ignoring for the moment the fact that Macintosh
windows are actually referenced with simple pointers instead of handles): 

windowStyle = (**theWindow).style;
That is, you’d dereference the handle twice to get at the underlying data structure
and then select the structure’s  style field. You can’t do this in Windows, because
the handle is opaque: it isn’t just a pointer to a pointer. Instead, you have to pass
the window handle to a Windows function that retrieves and returns the value of the
desired field. Windows provides all the functions you need to access the internal 
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components  of  its  data  structures.  (In  this  case,  you’d  use  the  GetWindowLong
function, which we’ll learn about in Chapter 3.) 

The Windows API header files also define a series of utility macros for manipulating
the elementary data types (see Table 2–2). You can pack two bytes together into a
16-bit word with MAKEWORD and get them back out again with HIBYTE and LOBYTE.
Similarly,  MAKELONG  packs  two  words  into  a  32-bit  long  word,  and  HIWORD and
LOWORD extract them. 

Table 2–2.  Utility macros for elementary data types
Macro name Meaning

MAKEWORD Pack bytes into word
HIBYTE Extract high-order byte from word
LOBYTE Extract low-order byte from word

MAKELONG Pack words into long word
HIWORD Extract high-order wordfrom long word
LOWORD Extract low-order wordfrom long word

Many of the types shown in Table 2–1 also have corresponding pointer types, such
as PWORD (“pointer to word”) and LPWORD (“long pointer to word”). In older versions
of Windows, with their 16-bit addresses and segmented memory architecture, the
pointer types beginning with P represented “near pointers” within the local memory
segment, while those with LP stood for “far pointers” from one segment to another.
As we’ll see, Win32 systems no longer have segmented memory or near and far
pointers. In Win32, both the  P and  LP pointer types represent true, 32-bit virtual-
memory addresses. 

Hungarian Notation
The names of pointer types such as  PWORD and LPWORD are examples of a style of
naming convention that is followed throughout the Windows programming interface.
In this naming style, the names of data types, variables, structure members, and
function parameters commonly begin with a prefix of anywhere from one to four
letters identifying the general type of data they represent, followed by the main
descriptive part of the name. For example, whereas a handle to a menu record in
the Macintosh Toolbox is called a MenuHandle, in Windows it’s an HMENU (“handle to
menu”). 

This style of naming is called Hungarian notation, and it was actually invented by a
real,  live  Hungarian.  His  name is  Charles  Simonyi  (or  Símonyi  Károly  in  proper
Magyar), and he’s the [??? insert correct job title here ???] at Microsoft. Charles and
I have known each other for a very long time, and I could tell you some amusing
stories about him when he was just a teenager, newly arrived from Budapest, and
the only words of English he knew were . . . but I digress. Charles is also one of the
most remarkable, brilliant people I’ve ever met. He’s the only person I know, for 
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instance,  who  can  read  Egyptian  hieroglyphics.  Unfortunately,  his  ideas  about
naming conventions can make even a simple C program read as if it were written in
hieroglyphics, too. 

Table 2–3.  Common Hungarian prefixes
Prefix Meaning

by Byte (8 bits)
w Word (16 bits, unsigned)
dw Double word (32 bits, unsigned)

i Integer (signed)
n Short integer (16 bits, signed)
l Long integer (32 bits, signed)
c Count

f Flag (boolean)
ch Character
s String (unterminated)
sz String (zero-terminated)

pt Point
x Horizontal coordinate (16 bits, signed)
y Vertical coordinate (16 bits, signed)

rgb RGB color

fn Function

p Pointer
lp Long pointer
h Handle

Table 2–3 is your Rosetta Stone, showing some of the common Hungarian prefixes
that you’ll encounter in the Windows interface and what they mean. Actually, the
Hungarian style is not entirely foreign to the Macintosh either. You can find traces of
it in some parts of the Macintosh Toolbox (notably the Printing Manager) that were
designed by programmers influenced by Charles’s ideas. 

I don’t really mean to be too critical of those ideas, by the way—those remarks I
made about Egyptian hieroglyphics were only for comic effect. Hungarian serves a
very useful purpose in making an object’s data type directly evident from its name.
When you run across a function parameter named  dwCursorID, for example, you
know immediately that it’s a double-word cursor ID; fVisible is a boolean visibility
flag;  and  so  on.  If  necessary,  two  or  more  of  these  prefixes  can  be  combined,
producing names such as  lpszTitle (“long pointer to a string, zero-terminated,
representing the title”). 
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Hungarian-style names are used universally throughout the Windows programming
interface, and anyone who wants to do Windows programming has to know how to
read them. They’re just not my style, though, and I don’t use them in my own code.
I prefer naming my variables in English. 

Like  Macintosh  System  7  (or  earlier  versions  of  the  Macintosh  system  under
MultiFinder), Windows is a  multitasking operating system. This means that a user
can run more than one program at a time, switching between them by clicking in
their windows on the screen. The system keeps track of each program’s state of
execution and switches the processor’s attention from one to another as needed. 

The  Windows  approach  to  multitasking  is  different  from that  of  the  Macintosh,
however.  The Macintosh uses a  cooperative multitasking model,  which relies  on
each program to be a “good citizen” and voluntarily give up control of the processor
when it isn’t needed. By using the Toolbox routine WaitNextEvent to retrieve events
from  its  event  queue,  a  program  gives  the  system  permission  to  suspend  its
execution and give control  of the processor to some other program in its place.
Eventually,  the  system  will  take  advantage  of  one  of  the  second  program’s
WaitNextEvent calls to switch control back to the first. Everything works smoothly
as long as every program calls WaitNextEvent often enough to give the others their
turn at bat. 

Windows, by contrast, uses a preemptive multitasking approach. The system itself
maintains control of the processor and portions it out among the running programs
in discrete “time slices.” Each program behaves as if  it had the computer all  to
itself. Programs don’t have to do anything explicit to relinquish control; the system
can forcibly yank the processor away from one program and turn it over to another. 

Also unlike the Macintosh, Windows allows the user to run more than one instance
of the same program simultaneously. Each separate instance of the program runs in
its own process, independent of any others. There can be as many instances of the
same program as the user wishes to start. All instances of the same program share
the same copy of the program’s executable code, but each has its own private set
of data to work with. 

This ability to create multiple instances of the same program can change the way
you  approach  an  application.  My  old  MiniEdit  program  for  the  Macintosh,  for
instance, is a multiple-window text editor, allowing the user to view several text files
side by side on the screen and to cut and paste text from one to another. When I
ported the program to Windows, I realized that multiple windows were unnecessary.
The  Windows  version  of  the  program,  WiniEdit,  opens  just  one  window  on  the
screen, viewing a single file at a time. When the user asks to open a new file, it
replaces the old file in the program’s one window instead of opening in a separate
window of its own. This is no limitation, though: a user who wants to view two or
more files simultaneously can simply start up a new instance of the program for
each file. Cutting and pasting from one file to another is no problem, since all such
operations go through a global clipboard that’s shared by all running processes. 
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Restricting the program to just one window and one file at a time helps simplify the
code and is one reason (among others) why the Windows version of the program is
significantly shorter than its Macintosh counterpart. 

Figure 2–1.  An MDI frame window

Programs wishing to display multiple files on the screen simultaneously can
use the Win32 Multiple Document Interface (MDI). An MDI program displays a
single  frame window, which in turn hosts a variable number of subwindows
(“child  windows,”  in  Windows  terminology),  each  containing  a  different
document. The user can open and close document subwindows as needed
and  can  freely  move,  size,  and  arrange  them within  the  confines  of  the
enclosing  frame  window  (see  Figure  2–1).  Many  common  Windows
applications use the MDI model, including the Windows NT Program Manager
and File Manager, Microsoft Word and Excel, and Visual C++. The Win32 API
provides all the support needed to write an MDI application; see the Win32
Programmer’s  Reference for  details.  However,  MDI  also  introduces  a
significant extra level of programming complexity. Before deciding on an MDI
implementation, consider seriously whether your user might not be just as
well served by multiple instances of a single-document application instead. 

Windows goes the Macintosh one step further in multitasking by allowing a program
to spawn multiple threads of execution. A thread is an independent locus of control 
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that  shares  processor  time  with  all  of  the  other  threads  in  the  system.  (In  a
multiprocessor  system,  two  or  more  threads  might  even  run  simultaneously  on
separate processors.) Your program might do background printing, for instance, by
spawning a separate thread to print a document while the main thread continues to
receive  and  process  mouse  and  keyboard  input  from  the  user.  Or  you  might
implement  your  own  memory  allocation  scheme  with  a  background  garbage
collector running in a thread of its own. All of a program’s threads operate within
the context of a single process and share access to the same address space and
other  system resources.  To prevent  threads from interfering with  each other  by
independently accessing the same memory or resources, Windows offers a variety
of facilities for synchronizing thread operations, such as wait functions, semaphores,
and  mutexes   (short  for  “mutually  exclusive  access”).  We  won’t  be  discussing
multithread programming and synchronization in this book, but you can learn about
them in the Win32 Programmer’s Reference if your application calls for them. 

Memory has had a long and checkered history in the Intel world. Even if  you’ve
never programmed an Intel-based machine, you’ve probably heard horror stories
from your beleaguered DOS friends about segment registers, expanded memory,
extended memory, protected mode, real mode, near pointers,  far pointers,  huge
pointers, and the infamous “640K barrier.” The early versions of Windows, which
functioned  within  the  DOS  environment  and  relied  on  it  for  their  memory
management, inherited all of these headaches as well. 

The good news is that a new day has dawned for Windows memory management. If
you’re an old hand at Intel/DOS/Windows programming, you can forget everything
you’ve ever learned about memory. (Then again, if you’re such an old hand at it,
why are you reading this book?) If you’re a newcomer like me, you don’t have to
know anything about the bad old days except that they’re gone. In Win32, every
process (that is, every instance of every program) gets its very own, totally linear,
transparently paged, 4-gigabyte virtual address space. No segments. No modes. No
barriers. A pointer is a pointer is a pointer. 

Of course, the operative word in the preceding paragraph is “virtual.” They haven’t
built a personal computer yet with 4 gigabytes of RAM, and if they did, you couldn’t
afford  to  buy  it.  (Anyway,  I  know  I couldn’t!)  What  really  happens  is  that  the
Windows operating system, with hardware support from the Intel processor (80386
or later), gives the program the  illusion of a 4-gigabyte playpen to throw its toys
around in. In practice, a program will actually use only a fraction of this vast address
space—and typically, only a fraction of that will be physically present in RAM at any
one time. 

How Virtual Memory Works
On the Macintosh, virtual memory is a luxury available only on high-end models—
those equipped with a paged memory-management unit, or PMMU. Even on those 
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systems, it’s strictly optional: the user chooses whether to activate it or not (using
the Memory control panel), and the system can function perfectly well without it. In
Win32,  virtual  memory  is  a  necessity,  woven inextricably  into  the  fabric  of  the
system itself. 

As in any virtual memory system, the Windows operating system is responsible for
maintaining the correspondence between logical  addresses seen by the program
and physical  storage  locations  in  RAM or  on  the  disk.  To  simplify  the  system’s
internal bookkeeping and reduce memory fragmentation, both the logical address
space and the physical storage media are divided into units of uniform size called
pages. A typical page size is 4K (4096) bytes, but this can vary from one hardware
platform to another: the DEC Alpha implementation of Windows, for instances, uses
an 8K page. 

The essence of virtual memory is that not all of a program’s logical address space
has to be physically present in RAM at all times. The system creates a paging file on
the disk to hold pages that are not currently in RAM, and a page map to keep track
of  each page’s current location,  either in  RAM or on the disk.  When a program
attempts to refer to a logical  address on a page that is not currently in RAM, a
hardware page fault occurs. The system then locates the required page on the disk
and reads it into RAM, replacing one of the pages already there. The page being
replaced may belong to the same process (that is, the same instance of the same
program) as the page being read in, or to some other process. If the contents of the
page are “dirty” (have been changed while in RAM), they are copied back out to the
disk  before  being  overwritten.  This  page  swap  is  transparent  to  the  running
program, which has the illusion of a 4-gigabyte linear address space all to itself. 

Establishing the correspondence between logical  addresses and physical  storage
locations is a two-step process. First the program reserves a range of addresses in
its address space, known as a region. Reserving a region doesn’t actually allocate
any physical memory resources yet; it simply informs the system that the program
intends to use the logical addresses within the designated range. When the program
no longer needs this block of addresses, it releases the region to make it available
for reuse. 

A reserved region is always a whole number of pages in size (the system will adjust
it upward, if necessary, to the nearest multiple of the page size) and always begins
at an address that is a multiple of the system’s allocation granularity. Like the page
size,  the allocation granularity  can vary  from one platform to  another,  but  it  is
typically  64K  (65,536)  bytes.  A  program  can  use  the  Windows  function
GetSystemInfo to learn the page size and allocation granularity, as well as a variety
of other parameters of the hardware platform it’s running on. 

Once a region of address space has been reserved, physical storage resources must
be  committed to  it  before  it  can  be  used.  Once  again,  the  unit  of  storage
commitment is the page. Committing a page of address space gives it a physical
location on the disk in which to hold its contents when they’re not active in RAM. In
committing a page, a program can specify its level of access protection: possible
protection attributes include familiar ones such as read-only, read/write, execute-
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only,  and so on,  as  well  as  a few other,  more specialized options that  we’ll  be
discussing shortly. 
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The program can commit all of the pages in a region at once, in a single operation,
but this isn’t required: they can also be committed a page at a time, as needed.
When  the  physical  storage  space  is  no  longer  needed,  the  page  can  be
decommitted. 

Reserving a region of address space and committing physical storage to it can be
done  separately  or  combined  in  a  single  operation.  The  Windows  function
VirtualAlloc performs either or both operations, depending on the values of the
parameters passed to it. Similarly, the VirtualFree function can decommit physical
storage, release a logical region, or both. 

Heap Allocation
What “memory management” means to most Macintosh programmers is allocating
and freeing individual blocks of memory from a heap. Needless to say, Windows has
heaps  too.  They  don’t  work  identically  to  those  on  the  Macintosh,  but  there’s
nothing particularly mysterious about them, either. 

In the older 16-bit versions of Windows, each program had its own local heap, along
with a system-wide global heap that was shared in common by all programs (sort of
like the Macintosh application and system heaps). A program could create blocks in
either heap with the Windows functions LocalAlloc and GlobalAlloc, and destroy
them with  LocalFree and  GlobalFree. When creating a block, you could specify
whether  it  should  be  movable or  fixed (analogous  to  Macintosh  relocatable  or
nonrelocatable  blocks)  and  discardable or  nondiscardable (like  purgeable  or
nonpurgeable on the Macintosh). 

These  old  allocation  functions  would  return  a  handle  to  the  new  block,  but
remember that a Windows handle is merely an “opaque reference” to an object,
whose internal contents are meaningful only to the system. In the case of the old
heap allocation functions, the handle returned was actually a 16-bit index to an
entry in a descriptor table, which in turn held the address of the block along with
other information about it. To gain access to the block’s contents, you had to call
the Windows function  LocalLock or  GlobalLock  (depending on which heap the
block was in).  These functions would lock the block in place,  preventing it  from
being moved or discarded, and return a pointer that you could use to get at its
contents. There was literally no way to touch the block without locking it at the
same time. When you were finished manipulating the block, you would unlock it
again with  LocalUnlock or  GlobalUnlock,  after which your pointer to it  was no
longer valid: 

blockHandle = LocalAlloc(...); // Allocate block from local heap
. . . ;
blockPtr = LocalLock (blockHandle); // Lock block and get pointer

. . . *blockPtr . . . ; // Use pointer to access block
LocalUnlock (blockHandle); // Unlock block; pointer no longer valid

Handles still exist in Win32, but only for objects that the system creates on your
behalf, such as windows or menus. (Needless to say, they’re also 32 bits long now
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instead of 16.) The old  LocalAlloc and  GlobalAlloc and their related functions
have been replaced with a new series called HeapAlloc, HeapFree, and so on. The
old calls are still supported, but only for the sake of backward compatibility with 
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existing code. New programs being developed today are supposed to use the new
functions exclusively. 

The biggest difference between the old and new heap functions is that with the new
ones there are no movable or discardable blocks and no heap compaction. (There is
a function called HeapCompact, but all it does is coalesce adjacent free blocks and
decommit empty pages; it never moves or discards any existing blocks.) I guess the
theory is that with 4 gigabytes of address space available, there’s always room to
grow the heap if you have to, so compaction is unnecessary. Whatever the reason,
the fact is that every block in a Win32 heap is fixed and nondiscardable, and is
referenced with a direct pointer instead of a handle. 

Table 2–4.  Win32 heap allocation functions
Function Mac counterpart Purpose

HeapCreate InitZone Create heap
HeapDestroy ————— Destroy heap
GetProcessHeap ApplicationZone Get program’s default heap

HeapAlloc NewHandle, NewPtr Allocate block from heap
HeapFree DisposHandle, 

DisposPtr
Deallocate block from heap

HeapSize GetPtrSize Get size of block in heap
HeapReAlloc SetPtrSize Change size of block in heap

Table 2–4 shows the basic functions in the new Win32 series. HeapAlloc creates a
new block of a specified size and returns a pointer (not a handle!) to it.  HeapFree
deallocates an existing block; all pointers to the block become invalid and must not
be used again. HeapSize returns the size of an existing block in bytes; HeapReAlloc
changes the size of an existing block. 

The HeapReAlloc function can always shorten a block in place, but if you ask
to lengthen the block, it may need to be moved to another location within the
heap in order to find the needed space. Instead of updating a master pointer
as on the Macintosh, HeapReAlloc simply returns a pointer to the block’s new
location; it’s up to you to use the new pointer in place of any previous ones
you may have been holding to the block. Of course, this can lead to trouble if
you have lots of copies of the old pointer sitting around embedded in other
data  structures.  If  you want  to  reallocate a  block to a bigger  size,  you’d
better make sure you have a way of tracking down and updating all of the
existing pointers to it. 

A  little-used feature of  the Macintosh Toolbox is  the ability  to  maintain  multiple
heaps (called “heap zones” on the Macintosh).  All  Macintosh memory allocation
routines  operate  implicitly  on  the  “current  heap  zone.”  This  is  normally  the
application  heap,  but  you  can  switch  to  another  zone  with  the  Toolbox  routine
SetZone. Win32 allows you the same capability, but instead of using a “current 
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heap,” each of the new heap allocation functions expects you to tell it explicitly
what heap to operate on by supplying a handle to the heap as one of the function’s
parameters. 

Usually, you’ll just want to use your process heap for all of your memory allocation.
Every  instance  of  a  Windows  program  has  its  own  process  heap,  created
automatically by the system when the instance is started up. Unless you’re doing
something fancy, you can simply obtain a handle to your process heap from the
Win32 function GetProcessHeap and pass it as a parameter whenever you call one
of  the  heap  functions.  Sometimes,  though,  you  may  find  it  useful  to  create
additional  heaps  with  the  HeapCreate function.  For  instance,  if  your  program
creates and destroys lots of memory blocks of a certain uniform size (nodes in a
linked list or tree structure, perhaps), you can manage memory more efficiently by
giving them a heap of their own. Since all blocks in this heap are the same size, it
can  never  become  fragmented:  as  long  as  there’s  any  free  space  at  all,  it’s
guaranteed to be the right size for the block you want to create. For a few other
ways  to  use  multiple  heaps,  see  Jeffrey  Richter’s  book,  Advanced  Win32
Programming. 

To create a new heap zone on the Macintosh, you allocate a large nonrelocatable
block from within your existing application heap (or even, in rare cases, from the
stack) and pass it  to  the Toolbox function  InitZone to  give it  the internal  data
structures it  needs to function as an independent heap. In effect,  the new zone
becomes a “subheap” inside your main application heap. In Win32, the HeapCreate
function creates a separate new heap in its own region of address space, rather
than inside another existing heap. You specify the new heap’s initial and maximum
size; HeapCreate does the following: 
• Reserves the specified maximum number of bytes in your address space 
• Commits the specified initial amount of physical disk space 
• Gives you back a handle to the new heap, which you can then pass to any of the

other heap allocation functions 
If  your  subsequent  allocation  requests  exceed  the  initial  size  of  the  heap,  the
system will automatically commit additional pages of physical storage as needed,
up to the reserved maximum. When you’re finished using the new heap, you can
decommit the storage it occupies with HeapDestroy. If you don’t explicitly destroy
the heap, its storage is automatically decommitted when your program terminates. 

Memory-Mapped Files
One of the side benefits of the way Windows virtual memory works is a new way of
doing file input and output. To read or write a file on the Macintosh, you have to
allocate  an  input/output  buffer  in  your  heap  and  then  explicitly  transfer  data
between the buffer and the file, using either the high-level input/output routines
FSRead and FSWrite or their low-level, parameter-block-based counterparts PBRead
and PBWrite. You can do your I/O the same way in Windows, using the file transfer
functions ReadFile and WriteFile—my WiniEdit example program does it this way,
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for instance—but often it’s more convenient to use a memory-mapped file instead. 
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The idea of memory-mapped files follows from the way the Windows virtual memory
system  is  structured.  Although  the  disk  space  backing  up  a  page  of  memory
normally  comes  from the  system’s  paging  file,  an  entry  in  the  page  map  can
actually point anywhere at all on the disk. In particular, it can point to a disk page
that’s part of an ordinary data file. This makes it possible to access the contents of a
file by simply mapping them directly into a region of your program’s virtual address
space. You can then fetch or store into any byte of the file just as if  it were an
ordinary memory location—because,  in  effect,  that’s  just  what  it  is.  The system
transparently handles all the details of physically transferring the data in and out to
the disk. 

The first step in memory-mapping a file is to create a file mapping, using a Win32
function  named—guess  what?—CreateFileMapping.  The  mapping  is  a  system-
created object that identifies the file along with some other security and protection
attributes to control the type of access allowed. Once you have a file mapping, you
can use it to open a view of all or part of the file within your virtual address space.
The  MapViewOfFile function  returns  a  pointer  to  the  region  of  address  space
containing the file; you can then access the file’s contents by indexing from this
pointer: 

fileHandle = CreateFile (...); // Open the file
fileMap    = CreateFileMapping (fileHandle,...); // Create mapping
fileBase   = MapViewOfFile (fileMap,...); // Open a view

. . . fileBase[i] . . . ; // Access file as an array

. . . *(fileBase + i) . . . ; //    or by pointer arithmetic

UnmapViewOfFile (fileBase); // Close view when finished
CloseHandle (fileMap); // Destroy mapping

Memory-mapped files are useful in their own right, just for the convenient access
they offer to the contents of a file. In addition, they provide a way for separate
processes  or  threads  to  communicate  with  one  another,  by  sharing  information
through independent views of the same file. This is perfectly safe as long as only
one of  the processes can  write  to  the file,  with  the rest  restricted to  read-only
access. It can get tricky, though, if two or more processes try to write to the file
independently. One necessary precaution is to make sure all of the processes’ views
of  the file are based on the same mapping object.  This  ensures that  the views
remain coherent, meaning that any changes made via one view will be seen by the
others as well. In addition, the processes must use some sort of synchronization
mechanism,  such  as  a  mutex,  to  ensure  that  only  one  process  at  a  time  has
permission  to  write  to  the  file.  Unfortunately,  this  whole  topic  of  interprocess
synchronization is  beyond the scope of  this  book;  see the  Win32 Programmer’s
Reference or  the  Jeffrey  Richter  book,  Advanced  Win32 Programming, for  more
details. 

Now comes  the  really  cool  part.  If  any  file  on  the  disk  can  be  mapped  into  a
program’s virtual address space, how about the file containing the executable code
of  the program itself? In  fact,  this is  just  the way the Windows system loads a
program 
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into memory for execution: it simply opens a memory-mapped view of the code
from the program’s executable file (which normally carries the file extension .exe, a
vestige of the old DOS file system) within the program’s virtual address space. 

Opening a view of  the executable file does not,  in  itself,  cause any code to be
loaded from the  disk;  but  when the  system attempts  to  transfer  control  to  the
program’s main entry point, a page fault will occur that will load in the first page of
code and begin executing. Thereafter, any time the program transfers control to an
address that is not already in RAM, the virtual  memory system will  bring in the
missing page automatically.  There’s no need to break the code up into explicitly
defined segments, as on the Macintosh; code swapping takes place transparently as
part of the routine workings of virtual memory. 

Notice that this scheme makes it easy for multiple instances of a program to share
the same copy of the code: the system simply maps the same executable file into
each instance’s address space, allowing them to page in portions of the code as
needed. If two instances happen to be executing in the same page of code, they can
share the same physical copy of that page in RAM. 

Of course, each instance has to have its own private region of address space to hold
its copy of the program’s global variables. The way Windows manages this is also
instructive.  Space  for  the  global  variables  is  reserved  within  the  program’s
executable file. When these pages are mapped into a process’s address space, they
are given a special protection attribute called copy-on-write. This allows the process
to read the page’s contents freely, so long as it doesn’t try to modify them. The first
time the process attempts to write to such a page, the system automatically creates
a new copy of the page in the system paging file and maps the new copy into the
process’s address space in place of the original copy from the program’s executable
file. Multiple instances of the same program can thus share the identical copy of the
data page as long as they’re only reading from it, while getting their own private
copies to work with if they have to write into it. 

One of the key early design decisions on the Macintosh was to have the executable
code of the Toolbox reside permanently in ROM. Calls from a running application
program to a Toolbox routine are implemented via the Motorola processor’s trap
mechanism. Each Toolbox call generates a trap word that looks just like an ordinary
machine-language instruction, but actually triggers the processor’s unimplemented
instruction trap.  This  activates  the  Macintosh  system’s  Trap  Dispatcher,  which
decodes the trap word to determine what Toolbox routine it refers to, locates the
routine’s entry point in  ROM, and transfers  control  to  it.  (All  this is  different,  of
course, on the new-fangled Power Macs.) 

As  you  might  expect,  Windows  system  calls  work  differently.  The  Intel-based
machines  that  Windows  typically  runs  on  have  no  built-in  ROM  code  and  no
processor emulation mechanism similar to the Motorola unimplemented instruction
trap. All of the code for the Windows system resides on the hard disk in a collection 
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of  dynamic link  libraries, or  DLLs. DLLs are  as  fundamental  to  the operation  of
Windows as the trap mechanism is to the Macintosh Toolbox. 

A dynamic link library is simply a collection of machine-language routines that are
available to be called by any program that needs them. There are many DLLs that
make up the Windows system, but the most important of them are  KERNEL.DLL,
which contains the code for low-level system functions such as memory and process
management;  GDI.DLL,  which  contains  the  Graphics  Device  Interface  (general-
purpose  graphics  routines);  and  USER.DLL,  which  implements  the  high-level
Windows user interface. Notice that these three libraries correspond to the three
main  divisions  of  the  Macintosh  ROM  code:  the  Macintosh  Operating  System,
QuickDraw, and the User Interface Toolbox. 

The reason they’re called dynamic link libraries is that the program’s references to
routines in the library are resolved dynamically, when the program is loaded and
run, rather than statically, at build time. Instead of linking the library code directly
into the program’s executable file, the Windows linker simply compiles a table of
system routines the program calls and the DLLs in which they reside. When the
program is run, the system locates the needed DLLs on the disk, maps them into
the program’s virtual address space, and patches each table entry to the correct
virtual address. This allows multiple running programs to share the same copy of
the system code, leaving it to the virtual memory system to page the code in from
the disk only when it’s actually needed. 

I’ve always considered resources the key to Macintosh programming. Although they
were first invented to serve a very limited purpose—translating onscreen messages
and menu commands for use in foreign countries—they turned out to be such a
useful  device  that  they have  grown to  take over  the entire  Macintosh  software
architecture. Many of the familiar software conveniences that Macintosh users know
and love—desk accessories, INIT extensions, control panels, Chooser devices—are
made possible by resources. I suspect that if Apple were to redesign the Macintosh
Toolbox from scratch today, they would scrap the idea of a file’s data fork entirely
and just make everything a resource and every file a resource file. 

Windows  has  resources  too,  but  they’re  not  as  pervasive  a  part  of  the  overall
software architecture as they are on the Macintosh. Unlike the Macintosh, with its
hundreds of resource types serving every conceivable purpose, Windows has only
about a dozen built-in resource types, shown in Table 2–5. Their only purpose is to
isolate certain aspects of a program’s operation so that they can be easily modified
without affecting the code itself. 

Most of the resource types shown in the table are self-explanatory, but a few of
them bear further discussion. As we’ll learn in Chapter 7, Windows uses the term
menu to refer, not only to the individual lists of items that we think of as menus on
the Macintosh, but also to what the Macintosh calls a menu bar: the complete set of
individual menus that a program offers to the user. So the Windows RT_MENU 
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resource is  actually  a combination of  the Macintosh resource types  'MBAR' and
'MENU'.  (The  prefix  RT_ stands  for  “resource  type.”)  Also,  a  Macintosh  'MENU'
resource includes information about Command-key shortcuts that the user can use
to invoke menu items directly from the keyboard. In Windows, these shortcuts are
called  keyboard  accelerators and  are  defined  in  a  separate  accelerator  table
obtained  from a  resource  of  type  RT_ACCELERATOR.  The  Windows  resource  type
RT_STRING is not a single text string like a Macintosh 'STR ' resource, but rather a
string table, like 'STR#' on the Macintosh. (Individual strings within the table have
their own resource IDs, however, rather than a single ID for the whole table and a
separate index for each string, as on the Macintosh.) Finally, the RT_GROUP_CURSOR
and  RT_GROUP_ICON resources are bundles of  alternative versions of  a cursor  or
icon,  for  use on display  screens of  different  depths  and resolutions.  When your
program asks to load the cursor  or  icon,  Windows checks the properties  of  the
current display device on the user’s machine and automatically chooses the version
most suitable for that device. 

Table 2–5.  Standard resource types
Type name Access function Meaning

RT_MENU LoadMenu Menu
RT_ACCELERATOR LoadAccelerators Accelerator table
RT_DIALOG ————— Dialog box
RT_FONT ————— Font
RT_FONTDIR ————— Font directory
RT_CURSOR LoadCursor Cursor
RT_GROUP_CURSOR ————— Cursor
RT_ICON LoadIcon Icon
RT_GROUP_ICON ————— Icon
RT_STRING LoadString String table
RT_BITMAP LoadBitmap Bitmap
RT_MESSAGETABLE FormatMessage Message table entry
RT_VERSION ————— Version data
RT_RCDATA ————— Application-defined resource

Resource Identification
Since Windows files don’t have separate resource forks, resources have to reside in
the main body of a file (what the Macintosh would call its data fork). In the context
of resource management, a file containing resources is called a  resource module.
Three types of file can serve as resource modules: 
• Executable program files (file extension .exe)
• Dynamic link libraries (file extension .dll)
• Font files (file extension .fon)
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A program’s own private resources typically reside in its executable file. There are
also some system-wide standard resources that live in the Windows DLLs. Windows
has no equivalent to the Macintosh notion of a “current resource file”: all Windows
functions  for  retrieving  resources  accept  an  explicit  parameter  to  identify  the
module in which to look for the desired resource. Typically, this is a handle to a
program  instance,  designating  the  program’s  executable  file  as  the  resource
module;  a  NULL value  denotes  one  of  the  standard  system-defined  resources
instead. 

As on the Macintosh, a Windows resource is designated by its resource type and an
individual identifier within that type. In Windows, each of these two items can be
given  as  either  a  character  string  or  an  integer  (somewhat  like  identifying  a
Macintosh resource either by name or by ID number). Although either method of
resource identification is acceptable, integer identifiers are considered preferable to
strings because they use less memory space. Formally, all Windows functions that
operate on resources take string parameters for both the resource type and the
individual  ID;  but  as  we’ll  see,  there  are  a  variety  of  ways  to  pass  them  the
identifiers in integer form instead. 

Resource Access
In the general case, accessing a resource is a two-stage process: first you have to
locate the resource within its resource module, then load its contents into memory.
The general-purpose Windows functions for these two operations are FindResource
and LoadResource. FindResource takes three parameters, specifying the resource’s
module, identifier, and type. It returns a handle, not to the resource itself, but to the
information block describing it in the resource module. (If the requested resource
can’t be found, the function returns NULL.) You must then pass this handle, in turn,
to LoadResource (along with the parameter identifying the resource module again)
to  get  a  handle  to  the  data  of  the  resource  itself.  For  example  the  following
statements find and load the system’s standard arrow cursor: 

rsrcHandle = FindResource(NULL, "IDC_ARROW", "RT_CURSOR"); // Find resource info
datahandle = LoadResource(NULL, rsrcHandle); // Load resource data

(The string "IDC_ARROW" is the name of the resource containing the standard arrow
cursor; the prefix IDC_ stands for “identifier of a cursor.”) 

In practice, however, it usually isn’t necessary to perform these two separate steps
explicitly.  Many  of  the  standard  resource  types  have  their  own  special-purpose
access functions (listed in Table 2–5), which combine the two steps into a single
operation. To load the standard arrow cursor, for instance, you’ll normally use the
LoadCursor function rather than FindResource and LoadResource: 

arrowHandle = LoadCursor(NULL, "IDC_ARROW");
This function already knows what resource type to look for, so you don’t have to
spell it out with a parameter. It performs the operations of both FindResource and
LoadResource in a single call,  and gives you back a specifically-typed handle of
type  HCURSOR.  The  other  functions  listed  in  the  table  work  similarly:  LoadMenu
returns a handle of type HMENU, LoadIcon a handle of type HICON, and so on. 
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Although the resource ID parameter to each of these functions is nominally defined
as a string (that is, as a pointer to a character), you can actually pass an integer
value instead. If the high-order word of the 32-bit parameter is zero, the resource-
access functions will recognize it as an integer resource identifier instead of a string
pointer. If you happened to know, for instance, that the numerical identifier for the
IDC_ARROW cursor is  32512, you could pass that value as the second parameter to
LoadCursor. Of course, you would first have to pad the 16-bit integer value to 32
bits and typecast it  into a string pointer. As a convenience, the Win32 interface
defines a C macro named MAKEINTRESOURCE that does just that: 

#define MAKEINTRESOURCE(i) (LPSTR)((DWORD)((WORD)(i)))
(The actual definition is a bit more complex than this, but conceptually this is the
way it works.) So to load the arrow cursor, you could use the following code: 

rsrcID      = MAKEINTRESOURCE(32512);
arrowHandle = LoadCursor(NULL, rsrcID);

If  the first character of the parameter string is a number sign (#), the resource-
access functions interpret the string as a decimal integer representing the resource
ID—so you could also load the arrow cursor this way: 

arrowHandle = LoadCursor(NULL, "#32512");
Of course, it isn’t very good coding style to hard-wire that resource number directly
into your code. The Win32 headers define the names of all the standard resources
as constants, already padded and typecast with MAKEINTRESOURCE and ready to use:

#define IDC_ARROW  MAKEINTRESOURCE(32512)
So instead of using the integer value directly, you can just use the resource name
as a parameter to the resource-access function: 

arrowHandle = LoadCursor(NULL, IDC_ARROW);
Notice that this is not the same as the first example we looked at: there are no
string quotes around the name this time. In the first example, the parameter we
passed  was  a  string  containing  the  name  of  the  desired  resource;  here,  it’s  a
constant representing the integer resource ID, padded to 32 bits and typecast to an
appropriate string pointer. 

When you’re working with the standard resource types, you usually aren’t interested
in opening up the resource and looking at the data inside; you simply get a handle
to the resource and pass it off to some other Windows function to operate on. If you
define your own custom resource types, however, only you know what’s inside them
—so the only way to make use of them is to reach in and put your hands directly on
the internal data. To do this, you have to convert the opaque handle you receive
from LoadResource into an actual pointer to the beginning of the resource’s data.
The Windows function that does this conversion for you is  LockResource. In older
versions of the Windows system, LockResource did what its name implies: it locked
the resource in place in the heap,  so that it  couldn’t  slide out from under your
pointer  in  the event  of  a  heap compaction.  As  we’ve seen,  the Win32 memory
manager  no  longer  moves  blocks  around  in  the  heap;  but  you  still  use  the
LockResource function to get a pointer to a resource’s data: 
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dataPtr = LockResource(dataHandle); // Convert handle to pointer
. . . dataPtr[i] . . . ; // Access data as an array
. . . *(dataPtr + i) . . . ; //    or by pointer arithmetic
UnlockResource(dataHandle); // Unlock when finished

The closing call to UnlockResource is no longer needed (and in fact has no effect at
all in Win32), but you can still retain it for the sake of symmetry and good form. 

Defining Your Own Resources
Of course, many if not most Windows programs will need to define some resources
of their own, in addition to the standard ones built into the Windows system. The
Visual C++ development system includes a resource compiler similar to Rez in the
Macintosh Programmer’s Workshop. The resource compiler accepts a text file (file
extension  .rc, for “resource compiler”) containing a description of the program’s
resources and compiles the resources themselves into the program’s executable
file. For illustration, Listing 2–1 shows the contents of  WiniEdit.rc, the resource
description file for my WiniEdit example application program. In all, the file defines
six  resources:  an icon for  representing the program on the screen,  a  menu,  an
accelerator  table  (which  defines  keyboard  shortcuts  for  the  program’s  menu
commands),  a  dialog box  for  the  About WiniEdit... command,  and two string
tables containing various bits and pieces of text that the program uses. 

Luckily, it isn’t necessary to learn the syntax of the resource description language
and compose your own resource descriptions in text form. The Visual C++ software
development environment includes a set of interactive resource editors that allow
you to create and manipulate  resources directly  onscreen with your  mouse and
keyboard, much like the Macintosh utility program ResEdit. There’s a resource editor
for menus, one for dialog boxes, and so on. The resource editors are fully integrated
into  the  development  environment.  As  you  build  your  resources  onscreen,  the
editors automatically generate the corresponding text descriptions and place them
in the resource description file for you. Later, when you build your program, your
Visual C++ make file (also generated for you automatically) will call the resource
compiler to compile the resource descriptions into resources and place them in your
executable file. In the normal course of events, you never have to deal directly with
the contents of the resource description file yourself. All of the text in Listing 2–1
was generated  for  me by the Visual  C++ development software,  untouched by
human hands. I don’t fully understand everything that’s in this file, and that’s just
fine with me. 
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Listing 2–1.  WiniEdit resource description file

//Microsoft Visual C++ generated resource script.
//
#include "WiniEdit Resources.h"

#define APSTUDIO_READONLY_SYMBOLS
/////////////////////////////////////////////////////////////////////////////
//
// Generated from the TEXTINCLUDE 2 resource.
//
#include "afxres.h"

/////////////////////////////////////////////////////////////////////////////
#undef APSTUDIO_READONLY_SYMBOLS

#ifdef APSTUDIO_INVOKED
/////////////////////////////////////////////////////////////////////////////
//
// TEXTINCLUDE
//

1 TEXTINCLUDE DISCARDABLE 
BEGIN
    "WiniEdit Resources.h\0"
END

2 TEXTINCLUDE DISCARDABLE 
BEGIN
    "#include ""afxres.h""\r\n"
    "\0"
END

3 TEXTINCLUDE DISCARDABLE 
BEGIN
    "\r\n"
    "\0"
END

/////////////////////////////////////////////////////////////////////////////
#endif    // APSTUDIO_INVOKED
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Listing 2–1.  WiniEdit resource description file (continued)

/////////////////////////////////////////////////////////////////////////////
//
// Dialog
//

About_Dialog DIALOG DISCARDABLE  32, 32, 163, 96
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE
FONT 8, "MS Sans Serif"
BEGIN
    ICON            ProgIcon_ID,About_Dialog,8,8,18,20
    CTEXT           "WiniEdit 1.0",IDC_STATIC,61,12,41,8
    CTEXT           "Example Windows application",IDC_STATIC,32,32,98,8
    LTEXT           "S. Chernicoff",IDC_STATIC,8,52,44,8
    RTEXT           "15 January 1995",IDC_STATIC,100,52,55,8
    DEFPUSHBUTTON   "Continue",IDOK,60,68,43,20
END

/////////////////////////////////////////////////////////////////////////////
//
// Menu
//

Main_Menu MENU PRELOAD DISCARDABLE 
BEGIN
    POPUP "&File"
    BEGIN
        MENUITEM "&New\tCtrl+N",                New_Item
        MENUITEM "&Open...\tCtrl+O",            Open_Item
        MENUITEM "&Close\tCtrl+W",              Close_Item
        MENUITEM SEPARATOR
        MENUITEM "&Save\tCtrl+S",               Save_Item
        MENUITEM "Save &As...\tCtrl+Alt+S",     SaveAs_Item
        MENUITEM "&Revert to Saved...\tCtrl+R", Revert_Item
        MENUITEM SEPARATOR
        MENUITEM "Page Set&up...\tCtrl+Alt+P",  Setup_Item
        MENUITEM "&Print...\tCtrl+P",           Print_Item
        MENUITEM SEPARATOR
        MENUITEM "E&xit\tCtrl+Q",               Exit_Item
    END
    POPUP "&Edit"
    BEGIN
        MENUITEM "&Undo\tCtrl+Z",               Undo_Item
        MENUITEM SEPARATOR
        MENUITEM "Cu&t\tCtrl+X",                Cut_Item
        MENUITEM "&Copy\tCtrl+C",               Copy_Item
        MENUITEM "&Paste\tCtrl+V",              Paste_Item
        MENUITEM "&Delete\tDelete",             Delete_Item
        MENUITEM SEPARATOR
        MENUITEM "Select &All\tCtrl+A",         SelectAll_Item
    END
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Listing 2–1.  WiniEdit resource description file (continued)

   POPUP "&Format"
    BEGIN
        MENUITEM "Text &Format...\tCtrl+F",     Format_Item
        MENUITEM "&Default Format\tCtrl+D",     Default_Item
        MENUITEM SEPARATOR
        MENUITEM "&Background Color...\tCtrl+B", Background_Item
    END
    POPUP "&Help"
    BEGIN
        MENUITEM "&Help\tCtrl+?",               Help_Item
        MENUITEM SEPARATOR
        MENUITEM "&About WiniEdit...",          About_Item
    END
END

/////////////////////////////////////////////////////////////////////////////
//
// Icon
//

ProgIcon_ID             ICON    DISCARDABLE     "WiniEdit.ico"

/////////////////////////////////////////////////////////////////////////////
//
// Accelerator
//

Accel_ID ACCELERATORS PRELOAD DISCARDABLE 
BEGIN
    "A",            SelectAll_Item,         VIRTKEY, CONTROL, NOINVERT
    "B",            Background_Item,        VIRTKEY, CONTROL, NOINVERT
    "C",            Copy_Item,              VIRTKEY, CONTROL, NOINVERT
    "D",            Default_Item,           VIRTKEY, CONTROL, NOINVERT
    "F",            Format_Item,            VIRTKEY, CONTROL, NOINVERT
    "N",            New_Item,               VIRTKEY, CONTROL, NOINVERT
    "O",            Open_Item,              VIRTKEY, CONTROL, NOINVERT
    "P",            Print_Item,             VIRTKEY, CONTROL, NOINVERT
    "P",            Setup_Item,             VIRTKEY, CONTROL, ALT, NOINVERT
    "Q",            Exit_Item,              VIRTKEY, CONTROL, NOINVERT
    "R",            Revert_Item,            VIRTKEY, CONTROL, NOINVERT
    "S",            Save_Item,              VIRTKEY, CONTROL, NOINVERT
    "S",            SaveAs_Item,            VIRTKEY, CONTROL, ALT, NOINVERT
    "V",            Paste_Item,             VIRTKEY, CONTROL, NOINVERT
    VK_BACK,        Undo_Item,              VIRTKEY, ALT, NOINVERT
    VK_DELETE,      Cut_Item,               VIRTKEY, SHIFT, NOINVERT
    VK_F1,          Help_Item,              VIRTKEY, NOINVERT
    VK_F2,          Cut_Item,               VIRTKEY, NOINVERT
    VK_F3,          Copy_Item,              VIRTKEY, NOINVERT
    VK_F4,          Paste_Item,             VIRTKEY, NOINVERT
    VK_HELP,        Help_Item,              VIRTKEY, CONTROL, NOINVERT
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Listing 2–1.  WiniEdit resource description file (continued)

   VK_HELP,        Help_Item,              VIRTKEY, SHIFT, CONTROL, 
                                                    NOINVERT
    VK_INSERT,      Copy_Item,              VIRTKEY, CONTROL, NOINVERT
    VK_INSERT,      Paste_Item,             VIRTKEY, SHIFT, NOINVERT
    "W",            Close_Item,             VIRTKEY, CONTROL, NOINVERT
    "X",            Cut_Item,               VIRTKEY, CONTROL, NOINVERT
    "Z",            Undo_Item,              VIRTKEY, CONTROL, NOINVERT
END

/////////////////////////////////////////////////////////////////////////////
//
// String Table
//

STRINGTABLE DISCARDABLE 
BEGIN
    ProgName_Str            "WiniEdit"
    NoTitle_Str             "Untitled"
    FileFilter_Str          "WiniEdit files (*.wed)|*.wed|Plain text files (*.txt)|*.txt|ASCII files (*.asc)|
*.asc*|All text files (*.wed, *.txt, *.asc)|*.wed;*.txt;*.asc|All files (*.*)|*.*||"
    FileExt_Str             "wed"
END

STRINGTABLE DISCARDABLE 
BEGIN
    Save_Msg                "Save document ""%s"" before closing?"
    Revert_Msg              "Revert to most recently saved version of document ""%s""?"
    DefaultFormat_Msg       "Revert document ""%s"" to standard text format?"
    WrongType_Msg           "Sorry, WiniEdit works with text documents only. Can't read or write document 
""%s""."
    TooLong_Msg             "Sorry, document ""%s"" is too long for WiniEdit to read."
    OutOfMem_Msg            "Out of memory!"
    IOError_Msg             "Unanticipated input/output error #%s."
END

#ifndef APSTUDIO_INVOKED
/////////////////////////////////////////////////////////////////////////////
//
// Generated from the TEXTINCLUDE 3 resource.
//

/////////////////////////////////////////////////////////////////////////////
#endif    // not APSTUDIO_INVOKED

System Foundations 25



26 System Foundations
As you compose your resources with the onscreen editors, you can assign them any
names and ID numbers you choose. In addition to the main resource description file,
the editors  also generate a resource header file containing C definitions for the
resource  names  and  IDs  you’ve  chosen,  which  you  can  incorporate  into  your
program’s source code with a C  #include directive. Listing 2–2 shows WiniEdit’s
resource header file. In this case (unlike the resource description file in Listing 2–1),
I’ve done some editing on the raw output produced by the development software,
just  to pretty the file up a bit  for the benefit of my human readers—things like
grouping the resource IDs by type instead of in strict numerical order the way the
development software produces them. But again, the essential contents of the file
were generated automatically by the development system, and again, they include
a few arcane incantations that I don’t really understand and don’t care to—as long
as they work (which they do). After including the contents of this file in my source
code with the directive 

#include "WiniEdit Resources.h"
I can use the resource IDs it defines to load my resources with statements like 

resourceID = MAKEINTRESOURCE(ProgIcon_ID); // Convert resource ID
progIcon   = LoadIcon(ThisInstance, resourceID); // Load icon

and 
resourceID = MAKEINTRESOURCE(Accel_ID); // Convert resource ID
AccelTable = LoadAccelerators(ThisInstance, resourceID); // Load accelerator table

and
LoadString (ThisInstance, NoTitle_Str, // Get default title
            NoNameTitle, TitleMax);

Notice that each of these examples uses the variable ThisInstance to identify the
resource module in which to look for the desired resource. This is a global program
variable that WiniEdit uses to hold a handle to the currently running instance of the
program.  Supplying  this  handle  as  the  resource  module  parameter  tells  the
Windows resource functions to look for the requested resource in the program’s
executable file, WiniEdit.exe. 
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Listing 2–2.  WiniEdit resource header file

//
//                               WiniEdit Resources.h
//             Resource header for example Windows application program
//                      S. Chernicoff         15 January 1995
// 

//       Global resource header file for WiniEdit example application program

//------------------------------------------------------------------------------------

// Icon

#define ProgIcon_ID                     1000

//------------------------------------------------------------------------------------

// Menus

#define Main_Menu                       1000

#define File_Menu                    0
#define    New_Item                     1001
#define    Open_Item                    1002
#define    Close_Item                   1003
#define    Save_Item                    1004
#define    SaveAs_Item                  1005
#define    Revert_Item                  1006
#define    Setup_Item                   1007
#define    Print_Item                   1008
#define    Exit_Item                    1009

#define Edit_Menu                    1
#define    Undo_Item                    1101
#define    Cut_Item                     1102
#define    Copy_Item                    1103
#define    Paste_Item                   1104
#define    Delete_Item                  1105
#define    SelectAll_Item               1106

#define Format_Menu                  2
#define    Format_Item                  1201
#define    Default_Item                 1202
#define    Background_Item              1203

#define Help_Menu                    3
#define    Help_Item                    1301
#define    About_Item                   1302

//------------------------------------------------------------------------------------
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Listing 2–2.  WiniEdit resource header file (continued)

// Accelerators

#define Accel_ID                        1000

//------------------------------------------------------------------------------------

// Control ID

#define Edit_Control                    1000

//------------------------------------------------------------------------------------

// Dialog

#define About_Dialog                    1000

//------------------------------------------------------------------------------------

// Strings

#define ProgName_Str                    1001
#define NoTitle_Str                     1002
#define FileFilter_Str                  1003
#define FileExt_Str                     1004

#define Save_Msg                        2001
#define Revert_Msg                      2002
#define DefaultFormat_Msg               2003
#define WrongType_Msg                   2004
#define TooLong_Msg                     2005
#define OutOfMem_Msg                    2006
#define IOError_Msg                     2007

//------------------------------------------------------------------------------------

// Next default values for new objects

#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_NEXT_RESOURCE_VALUE        102
#define _APS_NEXT_COMMAND_VALUE         40004
#define _APS_NEXT_CONTROL_VALUE         1000
#define _APS_NEXT_SYMED_VALUE           102
#endif
#endif
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Processes and Threads

• The Macintosh supports 
multitasking under System 7 (or 
earlier system versions with 
MultiFinder). 

• Win32 supports multitasking. 

Memory

• The Macintosh has a linear, 
unsegmented address space. 

• Win32 has a linear, 
unsegmented address space. 

• A Macintosh program can 
allocate blocks of memory from the 
heap as needed. 

• A Win32 program can allocate 
blocks of memory from the heap as 
needed. 

• A Macintosh program can have
multiple independent heap zones. 

• A Win32 program can have 
multiple independent heaps. 

File Input/Output

• Macintosh programs can read 
or write files sequentially with the 
Toolbox routines FSRead and FSWRite
(or PBRead and PBWrite). 

• Win32 programs can read or 
write files sequentially with the 
Windows functions ReadFile and 
WriteFile.  

Resources

• Macintosh programs use 
resources to allow aspects of the 
program’s operation to be modified 
without changing its executable 
code.  

• Win32 programs use resources
to allow aspects of the program’s 
operation to be modified without 
changing its executable code.  

• A Macintosh resource is 
identified by a resource type and 
either a name or an integer ID 
number. 

• A Win32 resource is identified 
by a resource type and either a name
or an integer ID number. 

• On the Macintosh, commonly 
used system resources are globally 
available in the system resource file. 

• In Win32, commonly used 
system resources are globally 
available in the system resource 
modules. 

• On the Macintosh, you can 
compile resources from a text 
description with the resource 
compiler Rez, or create them 
interactively on-screen with the 
resource editor ResEdit. 

• In Win32, you can compile 
resources from a text description 
with the Visual C++ resource 
compiler, or create them 
interactively on-screen with 
specialized resource editors available
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in the Visual C++ software 
development environment. 
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...Only Different
Processes and Threads

• The Macintosh uses 
cooperative multitasking. 

• Win32 uses preemptive 
multitasking. 

• No more than one instance of 
a Macintosh program can be active 
at a time. 

• Win32 can run multiple 
instances of a program at the same 
time, each in its own process. 

• To allow the user to view 
multiple documents at the same 
time, a Macintosh program must 
maintain multiple windows on the 
screen, one for each document. 

• A Windows program needn’t 
be able to open more than one 
document window at a time; the user
can view multiple documents by 
running multiple instances of the 
program. 

• A Macintosh program has a 
single thread of execution. 

• A Win32 program can spawn 
multiple threads of execution. 

Memory

• On the Macintosh, virtual 
memory is an option available only 
on some hardware models. 

• In Win32, virtual memory is an
integral part of the system. 

• On the Macintosh, the user 
chooses whether to enable virtual 
memory, using the Memory control 
panel. 

• In Win32, virtual memory is 
always enabled and cannot be 
turned off. 

• On the Macintosh, all virtual 
memory allocation is handled 
transparently by the system. 

• In Win32, a running program 
can explicitly reserve and release 
regions of its address space and 
commit and decommit physical 
pages to them. 

• The Macintosh Memory 
Manager can compact the heap by 
relocating or purging blocks to create
more usable free space. 

• The Win32 Memory Manager 
cannot compact the heap; it can only
expand it by committing additional 
pages of physical storage to it. 

• Blocks in the Macintosh heap 
can be either relocatable or 
nonrelocatable, purgeable or 
nonpurgeable. 

• Blocks in the Win32 heap are 
always immovable and 
nondiscardable. 
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• A block in the Macintosh heap 
may be identified by either a handle 
or a simple pointer, depending on 
whether it is relocatable or 
nonrelocatable. 

• A block in the Win32 heap is 
always identified by a simple pointer.

• A Macintosh handle is an 
indirect reference to the underlying 
data structure: a pointer to the 
object’s master pointer. 

• A Win32 handle is an opaque 
reference to the underlying data 
structure: its internal contents are 
meaningful only to the Windows 
system itself. 

• By dereferencing a Macintosh 
handle twice, you can gain access to 
the underlying data structure and 
manipulate its internal fields directly.

• The only way to manipulate 
the internal fields of a Win32 data 
structure is indirectly, via a Windows 
function provided for the purpose. 

• On the Macintosh, alternate 
heap zones are created from within 
the existing application heap. 

• In Win32, alternate heaps 
occupy separate regions of the 
process’s address space. 

• Blocks in the Macintosh heap 
are always allocated implicitly from 
the current heap zone. To use a 
different heap zone, you have to 
make the desired zone current. 

• Win32 heap allocation 
functions take a handle to a heap as 
an explicit parameter. 

• On the Macintosh, every page 
of virtual memory is backed by the 
system’s paging file on the hard disk.

• In Win32, a page of virtual 
memory may be backed by any file 
on the hard disk. 
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File Input/Output

• Macintosh programs can only 
read or write a file sequentially, 
using FSRead and FSWrite (or 
PBRead and PBWrite). 

• Win32 programs can read or 
write a file either sequentially, using 
ReadFile and WriteFile, or 
randomly, by mapping the file 
directly into a region of the 
program’s virtual address space. 

Program Loading and Execution

• On the Macintosh, if you want 
to swap parts of your program’s code
in and out of memory during 
execution, you must explicitly break 
up the program into separate code 
segments, which reside on the disk 
as separate 'CODE' resources. 

• A Win32 program has no 
explicit code segments, just a linear 
stream of code in the program’s 
executable (.exe) file. 

• The Macintosh system must 
physically load each of a program’s 
code segments into memory from 
the disk in order to execute it. 

• The Windows system simply 
maps the code from a program’s 
executable file into its virtual address
space, allowing the virtual memory 
system to load individual pages as 
needed. 

• The executable code of the 
Macintosh Toolbox resides 
permanently in read-only memory. 

• The executable code of the 
Windows system resides on the disk 
in a set of dynamic link libraries. 

• A Macintosh program calls a 
Toolbox routine by using the 
processor’s emulator trap 
mechanism. 

• A Windows program calls a 
Windows function by mapping the 
appropriate dynamic link library into 
its virtual address space and then 
jumping to the function as an 
ordinary subroutine. 

Resources

• The Macintosh Toolbox has 
hundreds of built-in resource types.  

• Win32 has only about a dozen 
built-in resource types.  

• A Macintosh file consists of 
two separate parts, a resource fork 
and a data fork. 

• A Win32 file has no resource 
fork; resources reside in the main 
body of the file. 

• The Macintosh Toolbox 
searches for a requested resource in 
a chain of open resource files, 

• Win32 searches for a 
requested resource only in a single 
designated file, called a resource 
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beginning with the current resource 
file. 

module. There is no concept of a 
current resource file. 

• A Macintosh resource type is 
identified by a four-character name. 

• A Win32 resource type is 
identified by either a character-string
name or an integer ID number. 

• On the Macintosh, finding a 
resource in its resource file and 
loading it into memory are combined
into a single operation. 

• In Win32, finding a resource in 
its resource module and loading it 
into memory are two separate 
operations, though often they are 
both performed by a single Windows 
function. 

• On the Macintosh, after 
creating a resource interactively with
the resource editor ResEdit, you can 
convert it into an equivalent text 
description with the resource 
decompiler DeRez. 

• In Win32, the Visual C++ 
interactive resource editors 
automatically generate a resource 
description in text form, ready to be 
compiled with the resource compiler. 
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