
1 System Foundations

Chapter 2

System Foundations

Before we get to the good stuff, we have some dull but necessary business to take
care of. In this chapter, we’ll take a quick look at some of the basic foundations of
the Windows system: elementary data types, multithreaded processes, memory
management, program loading and execution, resources, and the file system. After
we have these preliminaries out of the way, we’ll be ready to talk about the really
interesting stuff: programming the Windows user interface.

The C/C++ language version of the Win32 Application Program Interface (API) is
defined by a set of header files that you incorporate into your program with a C
#include directive:

#include <windows.h>
The master header file, WINDOWS.H, in turn calls in other header files, such as
WINDEF.H (basic type definitions), WINBASE.H (system kernel), WINGDI.H (graphics
device interface—like QuickDraw on the Macintosh), WINUSER.H (user interface
structures and functions), and so on. Taken together, the complete set of header
files defines all of the data structures and functions that constitute the Win32 API.

Elementary Data Types
The Win32 header files define a set of elementary data types and related constants
to represent things like integers, booleans, characters, pointers, floating-point
numbers, and so forth. These are generally derived from the built-in standard types
of the C language, but spelled in full capitals instead of lowercase: INT and CHAR, for
instance, instead of int and char. The Windows versions are carefully defined with
conditional-compilation flags to maintain source-code consistency between different
(16- and 32-bit) versions of the Windows system. For example, type INT represents
a 16-bit integer or a 32-bit integer, depending on which version of the system it’s
compiled for. As a rule, you should use the Windows-defined data types in your
programs in place of the built-in versions.

System Foundations 1

2 System Foundations
Table 2–1 shows the most important of the elementary data types. Most of them are
self-explanatory, but the last, HANDLE, needs a bit of further elaboration. Unlike the
Macintosh-style handles that you’re familiar with, a Windows handle is simply an
“opaque reference” to an underlying object. The handle’s internal semantics are
meaningful only to the Windows system itself; it has no inherent, straightforward
meaning like a Macintosh “pointer to a pointer.” What’s actually inside the handle is
none of your program’s business: it might be a simple pointer, an indirect pointer,
an index into an internal system table, or who-knows-what else.

Table 2–1. Elementary data types
Type name Meaning

VOID Unspecified type
BYTE Unsigned byte (8 bits)
WORD Unsigned word (16 bits)
DWORD Unsigned double word (32 bits)
BOOL Boolean (TRUE or FALSE)
CHAR Character
UCHAR Unsigned character
INT Signed integer
UINT Unsigned integer
SHORT Signed short integer (16 bits)
USHORT Unsigned short integer (16 bits)
LONG Signed long integer (32 bits)
ULONG Unsigned long integer (32 bits)
FLOAT Floating-point number
POINT Point
RECT Rectangle
HANDLE Handle

This means that you can’t “open up” a Windows handle and use it to put your hands
directly on the underlying data structure. The only meaningful thing you can do with
a handle is pass it to a Windows function and let the system manipulate the data
structure for you. For instance, suppose theWindow is a handle to a window
structure and you want to get the value of its style field, which contains a set of bit
flags controlling the window’s appearance on the screen. On the Macintosh, you
would write something like this (ignoring for the moment the fact that Macintosh
windows are actually referenced with simple pointers instead of handles):

windowStyle = (**theWindow).style;
That is, you’d dereference the handle twice to get at the underlying data structure
and then select the structure’s style field. You can’t do this in Windows, because
the handle is opaque: it isn’t just a pointer to a pointer. Instead, you have to pass
the window handle to a Windows function that retrieves and returns the value of the
desired field. Windows provides all the functions you need to access the internal

System Foundations 2

3 System Foundations
components of its data structures. (In this case, you’d use the GetWindowLong
function, which we’ll learn about in Chapter 3.)

The Windows API header files also define a series of utility macros for manipulating
the elementary data types (see Table 2–2). You can pack two bytes together into a
16-bit word with MAKEWORD and get them back out again with HIBYTE and LOBYTE.
Similarly, MAKELONG packs two words into a 32-bit long word, and HIWORD and
LOWORD extract them.

Table 2–2. Utility macros for elementary data types
Macro name Meaning

MAKEWORD Pack bytes into word
HIBYTE Extract high-order byte from word
LOBYTE Extract low-order byte from word

MAKELONG Pack words into long word
HIWORD Extract high-order wordfrom long word
LOWORD Extract low-order wordfrom long word

Many of the types shown in Table 2–1 also have corresponding pointer types, such
as PWORD (“pointer to word”) and LPWORD (“long pointer to word”). In older versions
of Windows, with their 16-bit addresses and segmented memory architecture, the
pointer types beginning with P represented “near pointers” within the local memory
segment, while those with LP stood for “far pointers” from one segment to another.
As we’ll see, Win32 systems no longer have segmented memory or near and far
pointers. In Win32, both the P and LP pointer types represent true, 32-bit virtual-
memory addresses.

Hungarian Notation
The names of pointer types such as PWORD and LPWORD are examples of a style of
naming convention that is followed throughout the Windows programming interface.
In this naming style, the names of data types, variables, structure members, and
function parameters commonly begin with a prefix of anywhere from one to four
letters identifying the general type of data they represent, followed by the main
descriptive part of the name. For example, whereas a handle to a menu record in
the Macintosh Toolbox is called a MenuHandle, in Windows it’s an HMENU (“handle to
menu”).

This style of naming is called Hungarian notation, and it was actually invented by a
real, live Hungarian. His name is Charles Simonyi (or Símonyi Károly in proper
Magyar), and he’s the [??? insert correct job title here ???] at Microsoft. Charles and
I have known each other for a very long time, and I could tell you some amusing
stories about him when he was just a teenager, newly arrived from Budapest, and
the only words of English he knew were . . . but I digress. Charles is also one of the
most remarkable, brilliant people I’ve ever met. He’s the only person I know, for

System Foundations 3

4 System Foundations
instance, who can read Egyptian hieroglyphics. Unfortunately, his ideas about
naming conventions can make even a simple C program read as if it were written in
hieroglyphics, too.

Table 2–3. Common Hungarian prefixes
Prefix Meaning

by Byte (8 bits)
w Word (16 bits, unsigned)
dw Double word (32 bits, unsigned)

i Integer (signed)
n Short integer (16 bits, signed)
l Long integer (32 bits, signed)
c Count

f Flag (boolean)
ch Character
s String (unterminated)
sz String (zero-terminated)

pt Point
x Horizontal coordinate (16 bits, signed)
y Vertical coordinate (16 bits, signed)

rgb RGB color

fn Function

p Pointer
lp Long pointer
h Handle

Table 2–3 is your Rosetta Stone, showing some of the common Hungarian prefixes
that you’ll encounter in the Windows interface and what they mean. Actually, the
Hungarian style is not entirely foreign to the Macintosh either. You can find traces of
it in some parts of the Macintosh Toolbox (notably the Printing Manager) that were
designed by programmers influenced by Charles’s ideas.

I don’t really mean to be too critical of those ideas, by the way—those remarks I
made about Egyptian hieroglyphics were only for comic effect. Hungarian serves a
very useful purpose in making an object’s data type directly evident from its name.
When you run across a function parameter named dwCursorID, for example, you
know immediately that it’s a double-word cursor ID; fVisible is a boolean visibility
flag; and so on. If necessary, two or more of these prefixes can be combined,
producing names such as lpszTitle (“long pointer to a string, zero-terminated,
representing the title”).

System Foundations 4

5 System Foundations
Hungarian-style names are used universally throughout the Windows programming
interface, and anyone who wants to do Windows programming has to know how to
read them. They’re just not my style, though, and I don’t use them in my own code.
I prefer naming my variables in English.

Like Macintosh System 7 (or earlier versions of the Macintosh system under
MultiFinder), Windows is a multitasking operating system. This means that a user
can run more than one program at a time, switching between them by clicking in
their windows on the screen. The system keeps track of each program’s state of
execution and switches the processor’s attention from one to another as needed.

The Windows approach to multitasking is different from that of the Macintosh,
however. The Macintosh uses a cooperative multitasking model, which relies on
each program to be a “good citizen” and voluntarily give up control of the processor
when it isn’t needed. By using the Toolbox routine WaitNextEvent to retrieve events
from its event queue, a program gives the system permission to suspend its
execution and give control of the processor to some other program in its place.
Eventually, the system will take advantage of one of the second program’s
WaitNextEvent calls to switch control back to the first. Everything works smoothly
as long as every program calls WaitNextEvent often enough to give the others their
turn at bat.

Windows, by contrast, uses a preemptive multitasking approach. The system itself
maintains control of the processor and portions it out among the running programs
in discrete “time slices.” Each program behaves as if it had the computer all to
itself. Programs don’t have to do anything explicit to relinquish control; the system
can forcibly yank the processor away from one program and turn it over to another.

Also unlike the Macintosh, Windows allows the user to run more than one instance
of the same program simultaneously. Each separate instance of the program runs in
its own process, independent of any others. There can be as many instances of the
same program as the user wishes to start. All instances of the same program share
the same copy of the program’s executable code, but each has its own private set
of data to work with.

This ability to create multiple instances of the same program can change the way
you approach an application. My old MiniEdit program for the Macintosh, for
instance, is a multiple-window text editor, allowing the user to view several text files
side by side on the screen and to cut and paste text from one to another. When I
ported the program to Windows, I realized that multiple windows were unnecessary.
The Windows version of the program, WiniEdit, opens just one window on the
screen, viewing a single file at a time. When the user asks to open a new file, it
replaces the old file in the program’s one window instead of opening in a separate
window of its own. This is no limitation, though: a user who wants to view two or
more files simultaneously can simply start up a new instance of the program for
each file. Cutting and pasting from one file to another is no problem, since all such
operations go through a global clipboard that’s shared by all running processes.

System Foundations 5

6 System Foundations
Restricting the program to just one window and one file at a time helps simplify the
code and is one reason (among others) why the Windows version of the program is
significantly shorter than its Macintosh counterpart.

Figure 2–1. An MDI frame window

Programs wishing to display multiple files on the screen simultaneously can
use the Win32 Multiple Document Interface (MDI). An MDI program displays a
single frame window, which in turn hosts a variable number of subwindows
(“child windows,” in Windows terminology), each containing a different
document. The user can open and close document subwindows as needed
and can freely move, size, and arrange them within the confines of the
enclosing frame window (see Figure 2–1). Many common Windows
applications use the MDI model, including the Windows NT Program Manager
and File Manager, Microsoft Word and Excel, and Visual C++. The Win32 API
provides all the support needed to write an MDI application; see the Win32
Programmer’s Reference for details. However, MDI also introduces a
significant extra level of programming complexity. Before deciding on an MDI
implementation, consider seriously whether your user might not be just as
well served by multiple instances of a single-document application instead.

Windows goes the Macintosh one step further in multitasking by allowing a program
to spawn multiple threads of execution. A thread is an independent locus of control

System Foundations 6

7 System Foundations
that shares processor time with all of the other threads in the system. (In a
multiprocessor system, two or more threads might even run simultaneously on
separate processors.) Your program might do background printing, for instance, by
spawning a separate thread to print a document while the main thread continues to
receive and process mouse and keyboard input from the user. Or you might
implement your own memory allocation scheme with a background garbage
collector running in a thread of its own. All of a program’s threads operate within
the context of a single process and share access to the same address space and
other system resources. To prevent threads from interfering with each other by
independently accessing the same memory or resources, Windows offers a variety
of facilities for synchronizing thread operations, such as wait functions, semaphores,
and mutexes (short for “mutually exclusive access”). We won’t be discussing
multithread programming and synchronization in this book, but you can learn about
them in the Win32 Programmer’s Reference if your application calls for them.

Memory has had a long and checkered history in the Intel world. Even if you’ve
never programmed an Intel-based machine, you’ve probably heard horror stories
from your beleaguered DOS friends about segment registers, expanded memory,
extended memory, protected mode, real mode, near pointers, far pointers, huge
pointers, and the infamous “640K barrier.” The early versions of Windows, which
functioned within the DOS environment and relied on it for their memory
management, inherited all of these headaches as well.

The good news is that a new day has dawned for Windows memory management. If
you’re an old hand at Intel/DOS/Windows programming, you can forget everything
you’ve ever learned about memory. (Then again, if you’re such an old hand at it,
why are you reading this book?) If you’re a newcomer like me, you don’t have to
know anything about the bad old days except that they’re gone. In Win32, every
process (that is, every instance of every program) gets its very own, totally linear,
transparently paged, 4-gigabyte virtual address space. No segments. No modes. No
barriers. A pointer is a pointer is a pointer.

Of course, the operative word in the preceding paragraph is “virtual.” They haven’t
built a personal computer yet with 4 gigabytes of RAM, and if they did, you couldn’t
afford to buy it. (Anyway, I know I couldn’t!) What really happens is that the
Windows operating system, with hardware support from the Intel processor (80386
or later), gives the program the illusion of a 4-gigabyte playpen to throw its toys
around in. In practice, a program will actually use only a fraction of this vast address
space—and typically, only a fraction of that will be physically present in RAM at any
one time.

How Virtual Memory Works
On the Macintosh, virtual memory is a luxury available only on high-end models—
those equipped with a paged memory-management unit, or PMMU. Even on those

System Foundations 7

8 System Foundations
systems, it’s strictly optional: the user chooses whether to activate it or not (using
the Memory control panel), and the system can function perfectly well without it. In
Win32, virtual memory is a necessity, woven inextricably into the fabric of the
system itself.

As in any virtual memory system, the Windows operating system is responsible for
maintaining the correspondence between logical addresses seen by the program
and physical storage locations in RAM or on the disk. To simplify the system’s
internal bookkeeping and reduce memory fragmentation, both the logical address
space and the physical storage media are divided into units of uniform size called
pages. A typical page size is 4K (4096) bytes, but this can vary from one hardware
platform to another: the DEC Alpha implementation of Windows, for instances, uses
an 8K page.

The essence of virtual memory is that not all of a program’s logical address space
has to be physically present in RAM at all times. The system creates a paging file on
the disk to hold pages that are not currently in RAM, and a page map to keep track
of each page’s current location, either in RAM or on the disk. When a program
attempts to refer to a logical address on a page that is not currently in RAM, a
hardware page fault occurs. The system then locates the required page on the disk
and reads it into RAM, replacing one of the pages already there. The page being
replaced may belong to the same process (that is, the same instance of the same
program) as the page being read in, or to some other process. If the contents of the
page are “dirty” (have been changed while in RAM), they are copied back out to the
disk before being overwritten. This page swap is transparent to the running
program, which has the illusion of a 4-gigabyte linear address space all to itself.

Establishing the correspondence between logical addresses and physical storage
locations is a two-step process. First the program reserves a range of addresses in
its address space, known as a region. Reserving a region doesn’t actually allocate
any physical memory resources yet; it simply informs the system that the program
intends to use the logical addresses within the designated range. When the program
no longer needs this block of addresses, it releases the region to make it available
for reuse.

A reserved region is always a whole number of pages in size (the system will adjust
it upward, if necessary, to the nearest multiple of the page size) and always begins
at an address that is a multiple of the system’s allocation granularity. Like the page
size, the allocation granularity can vary from one platform to another, but it is
typically 64K (65,536) bytes. A program can use the Windows function
GetSystemInfo to learn the page size and allocation granularity, as well as a variety
of other parameters of the hardware platform it’s running on.

Once a region of address space has been reserved, physical storage resources must
be committed to it before it can be used. Once again, the unit of storage
commitment is the page. Committing a page of address space gives it a physical
location on the disk in which to hold its contents when they’re not active in RAM. In
committing a page, a program can specify its level of access protection: possible
protection attributes include familiar ones such as read-only, read/write, execute-

System Foundations 8

9 System Foundations
only, and so on, as well as a few other, more specialized options that we’ll be
discussing shortly.

System Foundations 9

10 System Foundations
The program can commit all of the pages in a region at once, in a single operation,
but this isn’t required: they can also be committed a page at a time, as needed.
When the physical storage space is no longer needed, the page can be
decommitted.

Reserving a region of address space and committing physical storage to it can be
done separately or combined in a single operation. The Windows function
VirtualAlloc performs either or both operations, depending on the values of the
parameters passed to it. Similarly, the VirtualFree function can decommit physical
storage, release a logical region, or both.

Heap Allocation
What “memory management” means to most Macintosh programmers is allocating
and freeing individual blocks of memory from a heap. Needless to say, Windows has
heaps too. They don’t work identically to those on the Macintosh, but there’s
nothing particularly mysterious about them, either.

In the older 16-bit versions of Windows, each program had its own local heap, along
with a system-wide global heap that was shared in common by all programs (sort of
like the Macintosh application and system heaps). A program could create blocks in
either heap with the Windows functions LocalAlloc and GlobalAlloc, and destroy
them with LocalFree and GlobalFree. When creating a block, you could specify
whether it should be movable or fixed (analogous to Macintosh relocatable or
nonrelocatable blocks) and discardable or nondiscardable (like purgeable or
nonpurgeable on the Macintosh).

These old allocation functions would return a handle to the new block, but
remember that a Windows handle is merely an “opaque reference” to an object,
whose internal contents are meaningful only to the system. In the case of the old
heap allocation functions, the handle returned was actually a 16-bit index to an
entry in a descriptor table, which in turn held the address of the block along with
other information about it. To gain access to the block’s contents, you had to call
the Windows function LocalLock or GlobalLock (depending on which heap the
block was in). These functions would lock the block in place, preventing it from
being moved or discarded, and return a pointer that you could use to get at its
contents. There was literally no way to touch the block without locking it at the
same time. When you were finished manipulating the block, you would unlock it
again with LocalUnlock or GlobalUnlock, after which your pointer to it was no
longer valid:

blockHandle = LocalAlloc(...); // Allocate block from local heap
. . . ;
blockPtr = LocalLock (blockHandle); // Lock block and get pointer

. . . *blockPtr . . . ; // Use pointer to access block
LocalUnlock (blockHandle); // Unlock block; pointer no longer valid

Handles still exist in Win32, but only for objects that the system creates on your
behalf, such as windows or menus. (Needless to say, they’re also 32 bits long now

System Foundations 10

11 System Foundations
instead of 16.) The old LocalAlloc and GlobalAlloc and their related functions
have been replaced with a new series called HeapAlloc, HeapFree, and so on. The
old calls are still supported, but only for the sake of backward compatibility with

System Foundations 11

12 System Foundations
existing code. New programs being developed today are supposed to use the new
functions exclusively.

The biggest difference between the old and new heap functions is that with the new
ones there are no movable or discardable blocks and no heap compaction. (There is
a function called HeapCompact, but all it does is coalesce adjacent free blocks and
decommit empty pages; it never moves or discards any existing blocks.) I guess the
theory is that with 4 gigabytes of address space available, there’s always room to
grow the heap if you have to, so compaction is unnecessary. Whatever the reason,
the fact is that every block in a Win32 heap is fixed and nondiscardable, and is
referenced with a direct pointer instead of a handle.

Table 2–4. Win32 heap allocation functions
Function Mac counterpart Purpose

HeapCreate InitZone Create heap
HeapDestroy ————— Destroy heap
GetProcessHeap ApplicationZone Get program’s default heap

HeapAlloc NewHandle, NewPtr Allocate block from heap
HeapFree DisposHandle,

DisposPtr
Deallocate block from heap

HeapSize GetPtrSize Get size of block in heap
HeapReAlloc SetPtrSize Change size of block in heap

Table 2–4 shows the basic functions in the new Win32 series. HeapAlloc creates a
new block of a specified size and returns a pointer (not a handle!) to it. HeapFree
deallocates an existing block; all pointers to the block become invalid and must not
be used again. HeapSize returns the size of an existing block in bytes; HeapReAlloc
changes the size of an existing block.

The HeapReAlloc function can always shorten a block in place, but if you ask
to lengthen the block, it may need to be moved to another location within the
heap in order to find the needed space. Instead of updating a master pointer
as on the Macintosh, HeapReAlloc simply returns a pointer to the block’s new
location; it’s up to you to use the new pointer in place of any previous ones
you may have been holding to the block. Of course, this can lead to trouble if
you have lots of copies of the old pointer sitting around embedded in other
data structures. If you want to reallocate a block to a bigger size, you’d
better make sure you have a way of tracking down and updating all of the
existing pointers to it.

A little-used feature of the Macintosh Toolbox is the ability to maintain multiple
heaps (called “heap zones” on the Macintosh). All Macintosh memory allocation
routines operate implicitly on the “current heap zone.” This is normally the
application heap, but you can switch to another zone with the Toolbox routine
SetZone. Win32 allows you the same capability, but instead of using a “current

System Foundations 12

13 System Foundations
heap,” each of the new heap allocation functions expects you to tell it explicitly
what heap to operate on by supplying a handle to the heap as one of the function’s
parameters.

Usually, you’ll just want to use your process heap for all of your memory allocation.
Every instance of a Windows program has its own process heap, created
automatically by the system when the instance is started up. Unless you’re doing
something fancy, you can simply obtain a handle to your process heap from the
Win32 function GetProcessHeap and pass it as a parameter whenever you call one
of the heap functions. Sometimes, though, you may find it useful to create
additional heaps with the HeapCreate function. For instance, if your program
creates and destroys lots of memory blocks of a certain uniform size (nodes in a
linked list or tree structure, perhaps), you can manage memory more efficiently by
giving them a heap of their own. Since all blocks in this heap are the same size, it
can never become fragmented: as long as there’s any free space at all, it’s
guaranteed to be the right size for the block you want to create. For a few other
ways to use multiple heaps, see Jeffrey Richter’s book, Advanced Win32
Programming.

To create a new heap zone on the Macintosh, you allocate a large nonrelocatable
block from within your existing application heap (or even, in rare cases, from the
stack) and pass it to the Toolbox function InitZone to give it the internal data
structures it needs to function as an independent heap. In effect, the new zone
becomes a “subheap” inside your main application heap. In Win32, the HeapCreate
function creates a separate new heap in its own region of address space, rather
than inside another existing heap. You specify the new heap’s initial and maximum
size; HeapCreate does the following:
• Reserves the specified maximum number of bytes in your address space
• Commits the specified initial amount of physical disk space
• Gives you back a handle to the new heap, which you can then pass to any of the

other heap allocation functions
If your subsequent allocation requests exceed the initial size of the heap, the
system will automatically commit additional pages of physical storage as needed,
up to the reserved maximum. When you’re finished using the new heap, you can
decommit the storage it occupies with HeapDestroy. If you don’t explicitly destroy
the heap, its storage is automatically decommitted when your program terminates.

Memory-Mapped Files
One of the side benefits of the way Windows virtual memory works is a new way of
doing file input and output. To read or write a file on the Macintosh, you have to
allocate an input/output buffer in your heap and then explicitly transfer data
between the buffer and the file, using either the high-level input/output routines
FSRead and FSWrite or their low-level, parameter-block-based counterparts PBRead
and PBWrite. You can do your I/O the same way in Windows, using the file transfer
functions ReadFile and WriteFile—my WiniEdit example program does it this way,

System Foundations 13

14 System Foundations
for instance—but often it’s more convenient to use a memory-mapped file instead.

System Foundations 14

15 System Foundations
The idea of memory-mapped files follows from the way the Windows virtual memory
system is structured. Although the disk space backing up a page of memory
normally comes from the system’s paging file, an entry in the page map can
actually point anywhere at all on the disk. In particular, it can point to a disk page
that’s part of an ordinary data file. This makes it possible to access the contents of a
file by simply mapping them directly into a region of your program’s virtual address
space. You can then fetch or store into any byte of the file just as if it were an
ordinary memory location—because, in effect, that’s just what it is. The system
transparently handles all the details of physically transferring the data in and out to
the disk.

The first step in memory-mapping a file is to create a file mapping, using a Win32
function named—guess what?—CreateFileMapping. The mapping is a system-
created object that identifies the file along with some other security and protection
attributes to control the type of access allowed. Once you have a file mapping, you
can use it to open a view of all or part of the file within your virtual address space.
The MapViewOfFile function returns a pointer to the region of address space
containing the file; you can then access the file’s contents by indexing from this
pointer:

fileHandle = CreateFile (...); // Open the file
fileMap = CreateFileMapping (fileHandle,...); // Create mapping
fileBase = MapViewOfFile (fileMap,...); // Open a view

. . . fileBase[i] . . . ; // Access file as an array

. . . *(fileBase + i) . . . ; // or by pointer arithmetic

UnmapViewOfFile (fileBase); // Close view when finished
CloseHandle (fileMap); // Destroy mapping

Memory-mapped files are useful in their own right, just for the convenient access
they offer to the contents of a file. In addition, they provide a way for separate
processes or threads to communicate with one another, by sharing information
through independent views of the same file. This is perfectly safe as long as only
one of the processes can write to the file, with the rest restricted to read-only
access. It can get tricky, though, if two or more processes try to write to the file
independently. One necessary precaution is to make sure all of the processes’ views
of the file are based on the same mapping object. This ensures that the views
remain coherent, meaning that any changes made via one view will be seen by the
others as well. In addition, the processes must use some sort of synchronization
mechanism, such as a mutex, to ensure that only one process at a time has
permission to write to the file. Unfortunately, this whole topic of interprocess
synchronization is beyond the scope of this book; see the Win32 Programmer’s
Reference or the Jeffrey Richter book, Advanced Win32 Programming, for more
details.

Now comes the really cool part. If any file on the disk can be mapped into a
program’s virtual address space, how about the file containing the executable code
of the program itself? In fact, this is just the way the Windows system loads a
program

System Foundations 15

16 System Foundations
into memory for execution: it simply opens a memory-mapped view of the code
from the program’s executable file (which normally carries the file extension .exe, a
vestige of the old DOS file system) within the program’s virtual address space.

Opening a view of the executable file does not, in itself, cause any code to be
loaded from the disk; but when the system attempts to transfer control to the
program’s main entry point, a page fault will occur that will load in the first page of
code and begin executing. Thereafter, any time the program transfers control to an
address that is not already in RAM, the virtual memory system will bring in the
missing page automatically. There’s no need to break the code up into explicitly
defined segments, as on the Macintosh; code swapping takes place transparently as
part of the routine workings of virtual memory.

Notice that this scheme makes it easy for multiple instances of a program to share
the same copy of the code: the system simply maps the same executable file into
each instance’s address space, allowing them to page in portions of the code as
needed. If two instances happen to be executing in the same page of code, they can
share the same physical copy of that page in RAM.

Of course, each instance has to have its own private region of address space to hold
its copy of the program’s global variables. The way Windows manages this is also
instructive. Space for the global variables is reserved within the program’s
executable file. When these pages are mapped into a process’s address space, they
are given a special protection attribute called copy-on-write. This allows the process
to read the page’s contents freely, so long as it doesn’t try to modify them. The first
time the process attempts to write to such a page, the system automatically creates
a new copy of the page in the system paging file and maps the new copy into the
process’s address space in place of the original copy from the program’s executable
file. Multiple instances of the same program can thus share the identical copy of the
data page as long as they’re only reading from it, while getting their own private
copies to work with if they have to write into it.

One of the key early design decisions on the Macintosh was to have the executable
code of the Toolbox reside permanently in ROM. Calls from a running application
program to a Toolbox routine are implemented via the Motorola processor’s trap
mechanism. Each Toolbox call generates a trap word that looks just like an ordinary
machine-language instruction, but actually triggers the processor’s unimplemented
instruction trap. This activates the Macintosh system’s Trap Dispatcher, which
decodes the trap word to determine what Toolbox routine it refers to, locates the
routine’s entry point in ROM, and transfers control to it. (All this is different, of
course, on the new-fangled Power Macs.)

As you might expect, Windows system calls work differently. The Intel-based
machines that Windows typically runs on have no built-in ROM code and no
processor emulation mechanism similar to the Motorola unimplemented instruction
trap. All of the code for the Windows system resides on the hard disk in a collection

System Foundations 16

17 System Foundations
of dynamic link libraries, or DLLs. DLLs are as fundamental to the operation of
Windows as the trap mechanism is to the Macintosh Toolbox.

A dynamic link library is simply a collection of machine-language routines that are
available to be called by any program that needs them. There are many DLLs that
make up the Windows system, but the most important of them are KERNEL.DLL,
which contains the code for low-level system functions such as memory and process
management; GDI.DLL, which contains the Graphics Device Interface (general-
purpose graphics routines); and USER.DLL, which implements the high-level
Windows user interface. Notice that these three libraries correspond to the three
main divisions of the Macintosh ROM code: the Macintosh Operating System,
QuickDraw, and the User Interface Toolbox.

The reason they’re called dynamic link libraries is that the program’s references to
routines in the library are resolved dynamically, when the program is loaded and
run, rather than statically, at build time. Instead of linking the library code directly
into the program’s executable file, the Windows linker simply compiles a table of
system routines the program calls and the DLLs in which they reside. When the
program is run, the system locates the needed DLLs on the disk, maps them into
the program’s virtual address space, and patches each table entry to the correct
virtual address. This allows multiple running programs to share the same copy of
the system code, leaving it to the virtual memory system to page the code in from
the disk only when it’s actually needed.

I’ve always considered resources the key to Macintosh programming. Although they
were first invented to serve a very limited purpose—translating onscreen messages
and menu commands for use in foreign countries—they turned out to be such a
useful device that they have grown to take over the entire Macintosh software
architecture. Many of the familiar software conveniences that Macintosh users know
and love—desk accessories, INIT extensions, control panels, Chooser devices—are
made possible by resources. I suspect that if Apple were to redesign the Macintosh
Toolbox from scratch today, they would scrap the idea of a file’s data fork entirely
and just make everything a resource and every file a resource file.

Windows has resources too, but they’re not as pervasive a part of the overall
software architecture as they are on the Macintosh. Unlike the Macintosh, with its
hundreds of resource types serving every conceivable purpose, Windows has only
about a dozen built-in resource types, shown in Table 2–5. Their only purpose is to
isolate certain aspects of a program’s operation so that they can be easily modified
without affecting the code itself.

Most of the resource types shown in the table are self-explanatory, but a few of
them bear further discussion. As we’ll learn in Chapter 7, Windows uses the term
menu to refer, not only to the individual lists of items that we think of as menus on
the Macintosh, but also to what the Macintosh calls a menu bar: the complete set of
individual menus that a program offers to the user. So the Windows RT_MENU

System Foundations 17

18 System Foundations
resource is actually a combination of the Macintosh resource types 'MBAR' and
'MENU'. (The prefix RT_ stands for “resource type.”) Also, a Macintosh 'MENU'
resource includes information about Command-key shortcuts that the user can use
to invoke menu items directly from the keyboard. In Windows, these shortcuts are
called keyboard accelerators and are defined in a separate accelerator table
obtained from a resource of type RT_ACCELERATOR. The Windows resource type
RT_STRING is not a single text string like a Macintosh 'STR ' resource, but rather a
string table, like 'STR#' on the Macintosh. (Individual strings within the table have
their own resource IDs, however, rather than a single ID for the whole table and a
separate index for each string, as on the Macintosh.) Finally, the RT_GROUP_CURSOR
and RT_GROUP_ICON resources are bundles of alternative versions of a cursor or
icon, for use on display screens of different depths and resolutions. When your
program asks to load the cursor or icon, Windows checks the properties of the
current display device on the user’s machine and automatically chooses the version
most suitable for that device.

Table 2–5. Standard resource types
Type name Access function Meaning

RT_MENU LoadMenu Menu
RT_ACCELERATOR LoadAccelerators Accelerator table
RT_DIALOG ————— Dialog box
RT_FONT ————— Font
RT_FONTDIR ————— Font directory
RT_CURSOR LoadCursor Cursor
RT_GROUP_CURSOR ————— Cursor
RT_ICON LoadIcon Icon
RT_GROUP_ICON ————— Icon
RT_STRING LoadString String table
RT_BITMAP LoadBitmap Bitmap
RT_MESSAGETABLE FormatMessage Message table entry
RT_VERSION ————— Version data
RT_RCDATA ————— Application-defined resource

Resource Identification
Since Windows files don’t have separate resource forks, resources have to reside in
the main body of a file (what the Macintosh would call its data fork). In the context
of resource management, a file containing resources is called a resource module.
Three types of file can serve as resource modules:
• Executable program files (file extension .exe)
• Dynamic link libraries (file extension .dll)
• Font files (file extension .fon)

System Foundations 18

19 System Foundations
A program’s own private resources typically reside in its executable file. There are
also some system-wide standard resources that live in the Windows DLLs. Windows
has no equivalent to the Macintosh notion of a “current resource file”: all Windows
functions for retrieving resources accept an explicit parameter to identify the
module in which to look for the desired resource. Typically, this is a handle to a
program instance, designating the program’s executable file as the resource
module; a NULL value denotes one of the standard system-defined resources
instead.

As on the Macintosh, a Windows resource is designated by its resource type and an
individual identifier within that type. In Windows, each of these two items can be
given as either a character string or an integer (somewhat like identifying a
Macintosh resource either by name or by ID number). Although either method of
resource identification is acceptable, integer identifiers are considered preferable to
strings because they use less memory space. Formally, all Windows functions that
operate on resources take string parameters for both the resource type and the
individual ID; but as we’ll see, there are a variety of ways to pass them the
identifiers in integer form instead.

Resource Access
In the general case, accessing a resource is a two-stage process: first you have to
locate the resource within its resource module, then load its contents into memory.
The general-purpose Windows functions for these two operations are FindResource
and LoadResource. FindResource takes three parameters, specifying the resource’s
module, identifier, and type. It returns a handle, not to the resource itself, but to the
information block describing it in the resource module. (If the requested resource
can’t be found, the function returns NULL.) You must then pass this handle, in turn,
to LoadResource (along with the parameter identifying the resource module again)
to get a handle to the data of the resource itself. For example the following
statements find and load the system’s standard arrow cursor:

rsrcHandle = FindResource(NULL, "IDC_ARROW", "RT_CURSOR"); // Find resource info
datahandle = LoadResource(NULL, rsrcHandle); // Load resource data

(The string "IDC_ARROW" is the name of the resource containing the standard arrow
cursor; the prefix IDC_ stands for “identifier of a cursor.”)

In practice, however, it usually isn’t necessary to perform these two separate steps
explicitly. Many of the standard resource types have their own special-purpose
access functions (listed in Table 2–5), which combine the two steps into a single
operation. To load the standard arrow cursor, for instance, you’ll normally use the
LoadCursor function rather than FindResource and LoadResource:

arrowHandle = LoadCursor(NULL, "IDC_ARROW");
This function already knows what resource type to look for, so you don’t have to
spell it out with a parameter. It performs the operations of both FindResource and
LoadResource in a single call, and gives you back a specifically-typed handle of
type HCURSOR. The other functions listed in the table work similarly: LoadMenu
returns a handle of type HMENU, LoadIcon a handle of type HICON, and so on.

System Foundations 19

20 System Foundations
Although the resource ID parameter to each of these functions is nominally defined
as a string (that is, as a pointer to a character), you can actually pass an integer
value instead. If the high-order word of the 32-bit parameter is zero, the resource-
access functions will recognize it as an integer resource identifier instead of a string
pointer. If you happened to know, for instance, that the numerical identifier for the
IDC_ARROW cursor is 32512, you could pass that value as the second parameter to
LoadCursor. Of course, you would first have to pad the 16-bit integer value to 32
bits and typecast it into a string pointer. As a convenience, the Win32 interface
defines a C macro named MAKEINTRESOURCE that does just that:

#define MAKEINTRESOURCE(i) (LPSTR)((DWORD)((WORD)(i)))
(The actual definition is a bit more complex than this, but conceptually this is the
way it works.) So to load the arrow cursor, you could use the following code:

rsrcID = MAKEINTRESOURCE(32512);
arrowHandle = LoadCursor(NULL, rsrcID);

If the first character of the parameter string is a number sign (#), the resource-
access functions interpret the string as a decimal integer representing the resource
ID—so you could also load the arrow cursor this way:

arrowHandle = LoadCursor(NULL, "#32512");
Of course, it isn’t very good coding style to hard-wire that resource number directly
into your code. The Win32 headers define the names of all the standard resources
as constants, already padded and typecast with MAKEINTRESOURCE and ready to use:

#define IDC_ARROW MAKEINTRESOURCE(32512)
So instead of using the integer value directly, you can just use the resource name
as a parameter to the resource-access function:

arrowHandle = LoadCursor(NULL, IDC_ARROW);
Notice that this is not the same as the first example we looked at: there are no
string quotes around the name this time. In the first example, the parameter we
passed was a string containing the name of the desired resource; here, it’s a
constant representing the integer resource ID, padded to 32 bits and typecast to an
appropriate string pointer.

When you’re working with the standard resource types, you usually aren’t interested
in opening up the resource and looking at the data inside; you simply get a handle
to the resource and pass it off to some other Windows function to operate on. If you
define your own custom resource types, however, only you know what’s inside them
—so the only way to make use of them is to reach in and put your hands directly on
the internal data. To do this, you have to convert the opaque handle you receive
from LoadResource into an actual pointer to the beginning of the resource’s data.
The Windows function that does this conversion for you is LockResource. In older
versions of the Windows system, LockResource did what its name implies: it locked
the resource in place in the heap, so that it couldn’t slide out from under your
pointer in the event of a heap compaction. As we’ve seen, the Win32 memory
manager no longer moves blocks around in the heap; but you still use the
LockResource function to get a pointer to a resource’s data:

System Foundations 20

21 System Foundations
dataPtr = LockResource(dataHandle); // Convert handle to pointer
. . . dataPtr[i] . . . ; // Access data as an array
. . . *(dataPtr + i) . . . ; // or by pointer arithmetic
UnlockResource(dataHandle); // Unlock when finished

The closing call to UnlockResource is no longer needed (and in fact has no effect at
all in Win32), but you can still retain it for the sake of symmetry and good form.

Defining Your Own Resources
Of course, many if not most Windows programs will need to define some resources
of their own, in addition to the standard ones built into the Windows system. The
Visual C++ development system includes a resource compiler similar to Rez in the
Macintosh Programmer’s Workshop. The resource compiler accepts a text file (file
extension .rc, for “resource compiler”) containing a description of the program’s
resources and compiles the resources themselves into the program’s executable
file. For illustration, Listing 2–1 shows the contents of WiniEdit.rc, the resource
description file for my WiniEdit example application program. In all, the file defines
six resources: an icon for representing the program on the screen, a menu, an
accelerator table (which defines keyboard shortcuts for the program’s menu
commands), a dialog box for the About WiniEdit... command, and two string
tables containing various bits and pieces of text that the program uses.

Luckily, it isn’t necessary to learn the syntax of the resource description language
and compose your own resource descriptions in text form. The Visual C++ software
development environment includes a set of interactive resource editors that allow
you to create and manipulate resources directly onscreen with your mouse and
keyboard, much like the Macintosh utility program ResEdit. There’s a resource editor
for menus, one for dialog boxes, and so on. The resource editors are fully integrated
into the development environment. As you build your resources onscreen, the
editors automatically generate the corresponding text descriptions and place them
in the resource description file for you. Later, when you build your program, your
Visual C++ make file (also generated for you automatically) will call the resource
compiler to compile the resource descriptions into resources and place them in your
executable file. In the normal course of events, you never have to deal directly with
the contents of the resource description file yourself. All of the text in Listing 2–1
was generated for me by the Visual C++ development software, untouched by
human hands. I don’t fully understand everything that’s in this file, and that’s just
fine with me.

System Foundations 21

22 System Foundations
Listing 2–1. WiniEdit resource description file

//Microsoft Visual C++ generated resource script.
//
#include "WiniEdit Resources.h"

#define APSTUDIO_READONLY_SYMBOLS
///
//
// Generated from the TEXTINCLUDE 2 resource.
//
#include "afxres.h"

///
#undef APSTUDIO_READONLY_SYMBOLS

#ifdef APSTUDIO_INVOKED
///
//
// TEXTINCLUDE
//

1 TEXTINCLUDE DISCARDABLE
BEGIN
 "WiniEdit Resources.h\0"
END

2 TEXTINCLUDE DISCARDABLE
BEGIN
 "#include ""afxres.h""\r\n"
 "\0"
END

3 TEXTINCLUDE DISCARDABLE
BEGIN
 "\r\n"
 "\0"
END

///
#endif // APSTUDIO_INVOKED

System Foundations 22

23 System Foundations
Listing 2–1. WiniEdit resource description file (continued)

///
//
// Dialog
//

About_Dialog DIALOG DISCARDABLE 32, 32, 163, 96
STYLE DS_MODALFRAME | WS_POPUP | WS_VISIBLE
FONT 8, "MS Sans Serif"
BEGIN
 ICON ProgIcon_ID,About_Dialog,8,8,18,20
 CTEXT "WiniEdit 1.0",IDC_STATIC,61,12,41,8
 CTEXT "Example Windows application",IDC_STATIC,32,32,98,8
 LTEXT "S. Chernicoff",IDC_STATIC,8,52,44,8
 RTEXT "15 January 1995",IDC_STATIC,100,52,55,8
 DEFPUSHBUTTON "Continue",IDOK,60,68,43,20
END

///
//
// Menu
//

Main_Menu MENU PRELOAD DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&New\tCtrl+N", New_Item
 MENUITEM "&Open...\tCtrl+O", Open_Item
 MENUITEM "&Close\tCtrl+W", Close_Item
 MENUITEM SEPARATOR
 MENUITEM "&Save\tCtrl+S", Save_Item
 MENUITEM "Save &As...\tCtrl+Alt+S", SaveAs_Item
 MENUITEM "&Revert to Saved...\tCtrl+R", Revert_Item
 MENUITEM SEPARATOR
 MENUITEM "Page Set&up...\tCtrl+Alt+P", Setup_Item
 MENUITEM "&Print...\tCtrl+P", Print_Item
 MENUITEM SEPARATOR
 MENUITEM "E&xit\tCtrl+Q", Exit_Item
 END
 POPUP "&Edit"
 BEGIN
 MENUITEM "&Undo\tCtrl+Z", Undo_Item
 MENUITEM SEPARATOR
 MENUITEM "Cu&t\tCtrl+X", Cut_Item
 MENUITEM "&Copy\tCtrl+C", Copy_Item
 MENUITEM "&Paste\tCtrl+V", Paste_Item
 MENUITEM "&Delete\tDelete", Delete_Item
 MENUITEM SEPARATOR
 MENUITEM "Select &All\tCtrl+A", SelectAll_Item
 END

System Foundations 23

24 System Foundations
Listing 2–1. WiniEdit resource description file (continued)

 POPUP "&Format"
 BEGIN
 MENUITEM "Text &Format...\tCtrl+F", Format_Item
 MENUITEM "&Default Format\tCtrl+D", Default_Item
 MENUITEM SEPARATOR
 MENUITEM "&Background Color...\tCtrl+B", Background_Item
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&Help\tCtrl+?", Help_Item
 MENUITEM SEPARATOR
 MENUITEM "&About WiniEdit...", About_Item
 END
END

///
//
// Icon
//

ProgIcon_ID ICON DISCARDABLE "WiniEdit.ico"

///
//
// Accelerator
//

Accel_ID ACCELERATORS PRELOAD DISCARDABLE
BEGIN
 "A", SelectAll_Item, VIRTKEY, CONTROL, NOINVERT
 "B", Background_Item, VIRTKEY, CONTROL, NOINVERT
 "C", Copy_Item, VIRTKEY, CONTROL, NOINVERT
 "D", Default_Item, VIRTKEY, CONTROL, NOINVERT
 "F", Format_Item, VIRTKEY, CONTROL, NOINVERT
 "N", New_Item, VIRTKEY, CONTROL, NOINVERT
 "O", Open_Item, VIRTKEY, CONTROL, NOINVERT
 "P", Print_Item, VIRTKEY, CONTROL, NOINVERT
 "P", Setup_Item, VIRTKEY, CONTROL, ALT, NOINVERT
 "Q", Exit_Item, VIRTKEY, CONTROL, NOINVERT
 "R", Revert_Item, VIRTKEY, CONTROL, NOINVERT
 "S", Save_Item, VIRTKEY, CONTROL, NOINVERT
 "S", SaveAs_Item, VIRTKEY, CONTROL, ALT, NOINVERT
 "V", Paste_Item, VIRTKEY, CONTROL, NOINVERT
 VK_BACK, Undo_Item, VIRTKEY, ALT, NOINVERT
 VK_DELETE, Cut_Item, VIRTKEY, SHIFT, NOINVERT
 VK_F1, Help_Item, VIRTKEY, NOINVERT
 VK_F2, Cut_Item, VIRTKEY, NOINVERT
 VK_F3, Copy_Item, VIRTKEY, NOINVERT
 VK_F4, Paste_Item, VIRTKEY, NOINVERT
 VK_HELP, Help_Item, VIRTKEY, CONTROL, NOINVERT

System Foundations 24

25 System Foundations
Listing 2–1. WiniEdit resource description file (continued)

 VK_HELP, Help_Item, VIRTKEY, SHIFT, CONTROL,
 NOINVERT
 VK_INSERT, Copy_Item, VIRTKEY, CONTROL, NOINVERT
 VK_INSERT, Paste_Item, VIRTKEY, SHIFT, NOINVERT
 "W", Close_Item, VIRTKEY, CONTROL, NOINVERT
 "X", Cut_Item, VIRTKEY, CONTROL, NOINVERT
 "Z", Undo_Item, VIRTKEY, CONTROL, NOINVERT
END

///
//
// String Table
//

STRINGTABLE DISCARDABLE
BEGIN
 ProgName_Str "WiniEdit"
 NoTitle_Str "Untitled"
 FileFilter_Str "WiniEdit files (*.wed)|*.wed|Plain text files (*.txt)|*.txt|ASCII files (*.asc)|
.asc|All text files (*.wed, *.txt, *.asc)|*.wed;*.txt;*.asc|All files (*.*)|*.*||"
 FileExt_Str "wed"
END

STRINGTABLE DISCARDABLE
BEGIN
 Save_Msg "Save document ""%s"" before closing?"
 Revert_Msg "Revert to most recently saved version of document ""%s""?"
 DefaultFormat_Msg "Revert document ""%s"" to standard text format?"
 WrongType_Msg "Sorry, WiniEdit works with text documents only. Can't read or write document
""%s""."
 TooLong_Msg "Sorry, document ""%s"" is too long for WiniEdit to read."
 OutOfMem_Msg "Out of memory!"
 IOError_Msg "Unanticipated input/output error #%s."
END

#ifndef APSTUDIO_INVOKED
///
//
// Generated from the TEXTINCLUDE 3 resource.
//

///
#endif // not APSTUDIO_INVOKED

System Foundations 25

26 System Foundations
As you compose your resources with the onscreen editors, you can assign them any
names and ID numbers you choose. In addition to the main resource description file,
the editors also generate a resource header file containing C definitions for the
resource names and IDs you’ve chosen, which you can incorporate into your
program’s source code with a C #include directive. Listing 2–2 shows WiniEdit’s
resource header file. In this case (unlike the resource description file in Listing 2–1),
I’ve done some editing on the raw output produced by the development software,
just to pretty the file up a bit for the benefit of my human readers—things like
grouping the resource IDs by type instead of in strict numerical order the way the
development software produces them. But again, the essential contents of the file
were generated automatically by the development system, and again, they include
a few arcane incantations that I don’t really understand and don’t care to—as long
as they work (which they do). After including the contents of this file in my source
code with the directive

#include "WiniEdit Resources.h"
I can use the resource IDs it defines to load my resources with statements like

resourceID = MAKEINTRESOURCE(ProgIcon_ID); // Convert resource ID
progIcon = LoadIcon(ThisInstance, resourceID); // Load icon

and
resourceID = MAKEINTRESOURCE(Accel_ID); // Convert resource ID
AccelTable = LoadAccelerators(ThisInstance, resourceID); // Load accelerator table

and
LoadString (ThisInstance, NoTitle_Str, // Get default title
 NoNameTitle, TitleMax);

Notice that each of these examples uses the variable ThisInstance to identify the
resource module in which to look for the desired resource. This is a global program
variable that WiniEdit uses to hold a handle to the currently running instance of the
program. Supplying this handle as the resource module parameter tells the
Windows resource functions to look for the requested resource in the program’s
executable file, WiniEdit.exe.

System Foundations 26

27 System Foundations

Listing 2–2. WiniEdit resource header file

//
// WiniEdit Resources.h
// Resource header for example Windows application program
// S. Chernicoff 15 January 1995
//

// Global resource header file for WiniEdit example application program

//--

// Icon

#define ProgIcon_ID 1000

//--

// Menus

#define Main_Menu 1000

#define File_Menu 0
#define New_Item 1001
#define Open_Item 1002
#define Close_Item 1003
#define Save_Item 1004
#define SaveAs_Item 1005
#define Revert_Item 1006
#define Setup_Item 1007
#define Print_Item 1008
#define Exit_Item 1009

#define Edit_Menu 1
#define Undo_Item 1101
#define Cut_Item 1102
#define Copy_Item 1103
#define Paste_Item 1104
#define Delete_Item 1105
#define SelectAll_Item 1106

#define Format_Menu 2
#define Format_Item 1201
#define Default_Item 1202
#define Background_Item 1203

#define Help_Menu 3
#define Help_Item 1301
#define About_Item 1302

//--

System Foundations 27

28 System Foundations
Listing 2–2. WiniEdit resource header file (continued)

// Accelerators

#define Accel_ID 1000

//--

// Control ID

#define Edit_Control 1000

//--

// Dialog

#define About_Dialog 1000

//--

// Strings

#define ProgName_Str 1001
#define NoTitle_Str 1002
#define FileFilter_Str 1003
#define FileExt_Str 1004

#define Save_Msg 2001
#define Revert_Msg 2002
#define DefaultFormat_Msg 2003
#define WrongType_Msg 2004
#define TooLong_Msg 2005
#define OutOfMem_Msg 2006
#define IOError_Msg 2007

//--

// Next default values for new objects

#ifdef APSTUDIO_INVOKED
#ifndef APSTUDIO_READONLY_SYMBOLS
#define _APS_NEXT_RESOURCE_VALUE 102
#define _APS_NEXT_COMMAND_VALUE 40004
#define _APS_NEXT_CONTROL_VALUE 1000
#define _APS_NEXT_SYMED_VALUE 102
#endif
#endif

System Foundations 28

29 System Foundations
Processes and Threads

• The Macintosh supports
multitasking under System 7 (or
earlier system versions with
MultiFinder).

• Win32 supports multitasking.

Memory

• The Macintosh has a linear,
unsegmented address space.

• Win32 has a linear,
unsegmented address space.

• A Macintosh program can
allocate blocks of memory from the
heap as needed.

• A Win32 program can allocate
blocks of memory from the heap as
needed.

• A Macintosh program can have
multiple independent heap zones.

• A Win32 program can have
multiple independent heaps.

File Input/Output

• Macintosh programs can read
or write files sequentially with the
Toolbox routines FSRead and FSWRite
(or PBRead and PBWrite).

• Win32 programs can read or
write files sequentially with the
Windows functions ReadFile and
WriteFile.

Resources

• Macintosh programs use
resources to allow aspects of the
program’s operation to be modified
without changing its executable
code.

• Win32 programs use resources
to allow aspects of the program’s
operation to be modified without
changing its executable code.

• A Macintosh resource is
identified by a resource type and
either a name or an integer ID
number.

• A Win32 resource is identified
by a resource type and either a name
or an integer ID number.

• On the Macintosh, commonly
used system resources are globally
available in the system resource file.

• In Win32, commonly used
system resources are globally
available in the system resource
modules.

• On the Macintosh, you can
compile resources from a text
description with the resource
compiler Rez, or create them
interactively on-screen with the
resource editor ResEdit.

• In Win32, you can compile
resources from a text description
with the Visual C++ resource
compiler, or create them
interactively on-screen with
specialized resource editors available

System Foundations 29

30 System Foundations
in the Visual C++ software
development environment.

System Foundations 30

31 System Foundations

...Only Different
Processes and Threads

• The Macintosh uses
cooperative multitasking.

• Win32 uses preemptive
multitasking.

• No more than one instance of
a Macintosh program can be active
at a time.

• Win32 can run multiple
instances of a program at the same
time, each in its own process.

• To allow the user to view
multiple documents at the same
time, a Macintosh program must
maintain multiple windows on the
screen, one for each document.

• A Windows program needn’t
be able to open more than one
document window at a time; the user
can view multiple documents by
running multiple instances of the
program.

• A Macintosh program has a
single thread of execution.

• A Win32 program can spawn
multiple threads of execution.

Memory

• On the Macintosh, virtual
memory is an option available only
on some hardware models.

• In Win32, virtual memory is an
integral part of the system.

• On the Macintosh, the user
chooses whether to enable virtual
memory, using the Memory control
panel.

• In Win32, virtual memory is
always enabled and cannot be
turned off.

• On the Macintosh, all virtual
memory allocation is handled
transparently by the system.

• In Win32, a running program
can explicitly reserve and release
regions of its address space and
commit and decommit physical
pages to them.

• The Macintosh Memory
Manager can compact the heap by
relocating or purging blocks to create
more usable free space.

• The Win32 Memory Manager
cannot compact the heap; it can only
expand it by committing additional
pages of physical storage to it.

• Blocks in the Macintosh heap
can be either relocatable or
nonrelocatable, purgeable or
nonpurgeable.

• Blocks in the Win32 heap are
always immovable and
nondiscardable.

System Foundations 31

32 System Foundations
• A block in the Macintosh heap
may be identified by either a handle
or a simple pointer, depending on
whether it is relocatable or
nonrelocatable.

• A block in the Win32 heap is
always identified by a simple pointer.

• A Macintosh handle is an
indirect reference to the underlying
data structure: a pointer to the
object’s master pointer.

• A Win32 handle is an opaque
reference to the underlying data
structure: its internal contents are
meaningful only to the Windows
system itself.

• By dereferencing a Macintosh
handle twice, you can gain access to
the underlying data structure and
manipulate its internal fields directly.

• The only way to manipulate
the internal fields of a Win32 data
structure is indirectly, via a Windows
function provided for the purpose.

• On the Macintosh, alternate
heap zones are created from within
the existing application heap.

• In Win32, alternate heaps
occupy separate regions of the
process’s address space.

• Blocks in the Macintosh heap
are always allocated implicitly from
the current heap zone. To use a
different heap zone, you have to
make the desired zone current.

• Win32 heap allocation
functions take a handle to a heap as
an explicit parameter.

• On the Macintosh, every page
of virtual memory is backed by the
system’s paging file on the hard disk.

• In Win32, a page of virtual
memory may be backed by any file
on the hard disk.

System Foundations 32

33 System Foundations

File Input/Output

• Macintosh programs can only
read or write a file sequentially,
using FSRead and FSWrite (or
PBRead and PBWrite).

• Win32 programs can read or
write a file either sequentially, using
ReadFile and WriteFile, or
randomly, by mapping the file
directly into a region of the
program’s virtual address space.

Program Loading and Execution

• On the Macintosh, if you want
to swap parts of your program’s code
in and out of memory during
execution, you must explicitly break
up the program into separate code
segments, which reside on the disk
as separate 'CODE' resources.

• A Win32 program has no
explicit code segments, just a linear
stream of code in the program’s
executable (.exe) file.

• The Macintosh system must
physically load each of a program’s
code segments into memory from
the disk in order to execute it.

• The Windows system simply
maps the code from a program’s
executable file into its virtual address
space, allowing the virtual memory
system to load individual pages as
needed.

• The executable code of the
Macintosh Toolbox resides
permanently in read-only memory.

• The executable code of the
Windows system resides on the disk
in a set of dynamic link libraries.

• A Macintosh program calls a
Toolbox routine by using the
processor’s emulator trap
mechanism.

• A Windows program calls a
Windows function by mapping the
appropriate dynamic link library into
its virtual address space and then
jumping to the function as an
ordinary subroutine.

Resources

• The Macintosh Toolbox has
hundreds of built-in resource types.

• Win32 has only about a dozen
built-in resource types.

• A Macintosh file consists of
two separate parts, a resource fork
and a data fork.

• A Win32 file has no resource
fork; resources reside in the main
body of the file.

• The Macintosh Toolbox
searches for a requested resource in
a chain of open resource files,

• Win32 searches for a
requested resource only in a single
designated file, called a resource

System Foundations 33

34 System Foundations
beginning with the current resource
file.

module. There is no concept of a
current resource file.

• A Macintosh resource type is
identified by a four-character name.

• A Win32 resource type is
identified by either a character-string
name or an integer ID number.

• On the Macintosh, finding a
resource in its resource file and
loading it into memory are combined
into a single operation.

• In Win32, finding a resource in
its resource module and loading it
into memory are two separate
operations, though often they are
both performed by a single Windows
function.

• On the Macintosh, after
creating a resource interactively with
the resource editor ResEdit, you can
convert it into an equivalent text
description with the resource
decompiler DeRez.

• In Win32, the Visual C++
interactive resource editors
automatically generate a resource
description in text form, ready to be
compiled with the resource compiler.

System Foundations 34

